



# AN FPGA-BASED TRACK FINDER FOR THE L1 TRIGGER OF THE CMS EXPERIMENT AT HL-LHC

<u>Davide Cieri</u>\* (STFC RAL, University of Bristol) on behalf of CMS and TMTT collaborations

\*Supported by the EU FP7-PE0PLE-2012-ITN project nr. 317446, INFIERI, "Intelligent Fast Interconnected and Efficient Devices for Frontier Exploitation in Research and Industry"









## PHASE II CMS UPGRADE

- Major upgrade of experiment for HL-LHC (post-2025)
  - Tracker and forward calorimeter replacement (radiation damage)
- ▶ Level-1 trigger upgrades
  - □ p to 200 pileup collisions/BX (today 40)
  - output bandwidth up to 750 kHz (currently 100 kHz)
  - $\triangleright$  latency 12.5 μs (now 4 μs)
- Tracker data used at Level-1
  - to maintain trigger rate within limit, without affecting performance
  - on detector data rejection needed to reduce input bandwidth into Track Trigger system







### CMS PHASE II TRACKER

davide.cieri@cern.ch TWEPP 2017 UC Santa Cruz • 11/09/2017

#### **PS modules (20 < r < 60 cm)**



### 2S modules (r > 60 cm)



- ▶ Presence of **high-p**<sub>T</sub> **tracks** is hint of an interesting physics event
- Novel tracking modules ( $p_T$  modules) with two separated silicon sensors to discriminate tracks with  $p_T > 2-3$  GeV (**stubs**)
  - On detector data rate reduction O(100)





# \* \*

## L1 TRACK TRIGGER

- ► Task of L1 Track Trigger is to reconstruct tracks from charged particles with p<sub>T</sub> > 2-3 GeV
- Latency budget : 4 μs
- Very high data-rate: 20.000 stubs per BX at PU200



- We adopt a fully time multiplexed architecture
  - ▶ Pioneered by the current L1 Calo Trigger system
  - Data from **each BX** are processed by a **single processing unit** or node

## TRACK FINDING ARCHITECTURE

- No FPGA can handle the entire tracker data rate
- Tracker is divided in octants across Φ
  - Octant data is readout by 32 Data, Trigger and Control (DTC) boards
  - To avoid losses at boundaries, each **Track Finder Processor (TFP)** board gets in input data from two detector octant (64 DTCs)
  - Each TFP searches tracks in a processing octants (rotation of half octant)
  - **Each TFP handles data from 1/8 in Φ and 1/(time multiplexed period)**
  - Baseline TMP = 18 -> total no. boards needed 18x8 = 144



### HARDWARE DEMONSTRATOR

- Track Finding capability of the system has to be demonstrated in hardware
- An hardware demonstrator has been built to prove feasibility and capability of the TFP (demonstrator slice)
  - > TFP designed to operate independently
- Made of several MP7 boards, each one running a different step in the algorithm





### Master Processor 7 (MP7)

- Currently used widely in CMS trigger
- Xilinx Virtex-7 690 FPGA
- 72 I/O optical links running at 10.3 Gbps
- Infrastructure fw, providing transceiver buffering, I/O formatting and external communication
  - Separated from algorithm space

### TRACK FINDER PROCESSOR



- A total of 5 boards are needed to demonstrate track finding functionalities
- 3 boards (2 sources and 1 sink) are used to inject and store data from 30 LHC events into the demo chain
- Separating the algorithm in blocks facilitates fw development and optimise manpower utilisation



## DEMONSTRATOR DATA TAKING

- A series of software have been developed to test the demonstrator system
- Feed the demonstrator with Monte Carlo data from Phase II CMS simulation
- Hardware results are compared directly with results from Emulation
- Up to 30 events per injection
- Demonstrator slice is octant independent -> coverage of the entire tracker acceptance





### HOUGH TRANSFORM





- **Search** for tracks in the **rΦ plane**
- ▶ For tracks with p<sub>T</sub> > 3 GeV

$$\phi pprox -rac{q}{p_T} imes r + \phi_0 \qquad 
ightarrow \qquad \phi_0 pprox \phi + rac{q}{p_T} imes r$$

- Each stub draw a straight line in the parameter space
- Accumulation points correspond to track candidates
- **HT** space discretised in a 32x64 array  $q/p_T$  x Φ<sub>0</sub>
- Firmware implementation described at TWEPP2016
  - M. Pesaresi, <u>An FPGA based track finder at Level 1 for CMS at the High Luminosity LHC</u>

## TRACK FITTING AND FILTERING

- Track candidates out of the Hough Transform contains spurious stubs from pileup interactions
- Also about 40% of produced candidates are fakes
- Track filtering stage is needed in order to reject fakes and clean tracks
- Two algorithms have been developed

#### **Kalman Filter**

- combined fitters/filters
- default offline fit
- incorrect trajectories rejected
- can take into account scattering effects
- mathematically heavy (implemented in MaxJ, see. <u>Summers, TWEPP2016</u>)

### **Seed Filter plus Linear Regression**

- Seed Filter verifies that HT track candidates draw a straight line trajectory on rz plane and rejects inconsistent stubs
- 2. Simple Linear Regression calculate track parameters, performing independent straight line fits in **r\Phi** and **rz**



## SEED FILTER ALGORITHM

1. **Seed Finder:** computes lines through stubs in PS layers

- 2. Seed Checker:
  Extrapolates to other tracking layers and rejects incompatible stubs
- 3. **Seed Comparison:**Keeps the seed with the most layers
- 4. Simple Linear Regression: calculates track parameters, fitting straight lines in  $r\Phi$  and rz



SF+LR FIRMWARE IMPLEMENTATION

davide.cieri@cern.ch TWEPP 2017 UC Santa Cruz • 11/09/2017

- Stubs from each HT output channel are stored in a separate FIFO (Track Locator)
- The Control Unit distributes HT track candidates to Seed Filter
   + Linear Regression blocks (SF+LR) in a round-robin fashion
- ► Each Control Unit handles 6 Track Locator and 4 SF+LR blocks

 Tracks are then sent to a router block and transmitted to 18
 Duplicate Removal modules



Simple DR block removes
 HT candidates with same
 helix parameters



**SF+LR MODULE** 



## FITTERS COMPARISON







- Similar performance for both KF and SF+LR
  - KF: Slightly better rΦ resolution
  - ▶ SF+LR: better in rz
- Same track finding efficiency (94.7% vs. 94.6%)
- Smaller fake rate in SF+LR (12% vs. 18%)

## FITTERS COMPARISON





- Similar FPGA utilisation
  - SF+LR more LUTs, KF more RAMs
- SF+LR slightly faster (about 130 ns)
- Both designs implement the same DR modules

DEMONSTRATOR
RESULTS:
TRACK FINDING
PERFORMANCE





- Track Finding Efficiency: no. reconstructed tracks/no. generated tracks
  - considering only generated tracks from primary interaction with pT > 3 GeV and hits in 4+ tracking stations
- ~95% average track finding efficiency of inclusive ttbar@PU200
  - ~97% for muons



# \*\*\*

DEMONSTRATOR
RESULTS:
TRACK FINDING
PERFORMANCE





- ▶ About 1%  $p_T$  resolution and ~2mm  $z_0$  resolution in the barrel
  - better resolution can be achieved increasing the number of bits to encode the r and z stub coordinates (1mm resolution achievable)

## DEMONSTRATOR RESULTS: LATENCY

First Out

Last Out

Service S

- Fixed latency event independent
- ▶ Well below 4µs budget
- Lower latency achievable by increasing clock frequency, link speed and improving utilisation



## TFP RESOURCE USAGE

davide.cieri@cern.ch TWEPP 2017 UC Santa Cruz • 11/09/2017



#### Track Finder Processor Resource Usage



- Entire algorithm could potentially fit in just 3 Virtex-7 690
  - ▶ limited I/O bandwitdh
- Final system expected to be constructed with two Kintex Ultrascale-115 FPGAs
  - resource usage can be improved targeting higher clock frequency
  - optimisation of tracker geometry design (tilted barrel) will reduce input data rate

**SUMMARY** 

davide.cieri@cern.ch TWEPP 2017 UC Santa Cruz • 11/09/2017

- Demonstrated in hw the concept of a full track-finding system at HL-LHC with FPGA based processing boards
  - Demonstrator reconstructs tracks with ~95% efficiency in less than 4μs

### Highly configurable

- Two independent fitters developed (similar performance)
- Algorithm updates can be deployed in few seconds
- Extra nodes allows testing of new fw during data taking

### Highly scalable

- Adaptable segmentation to take care of larger/smaller data rates
- Plans to build another demonstrator system with newer FPGAs and 16.3 Gbps optical links
  - Target smaller latency O(2µs)
- Our design has been recognised as the most promising option (TDR) for the future CMS phase II Track Trigger system
  - System could be built even today if required (\$\$\$)
  - Expect to be installed for CMS Phase II



- CMS Collaboration, "Technical Proposal for the Phase-II Upgrade of the CMS Detector", Technical Report CERN-LHCC-2015-010. LHCC-P-008. CMS-TDR-15-02, Geneva, Jun, 2015. Upgrade Project Leader Deputies: Lucia Silvestris (INFN-Bari), Jeremy Mans (University of Minnesota) Additional contacts: Lucia. Silvestris@cern.ch, Jeremy.Mans@cern.ch.
- CMS Collaboration, "CMS Technical Design Report for the Phase-2 Tracker Upgrade", Technical Report CERN-LHCC-2017-xxx. CMS-TDR-xxx, Geneva, month, 2017.
- G. Hall, "A time-multiplexed track-trigger for the CMS HL-LHC upgrade", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 824 (2016) 292 295, doi:10.1016/j.nima.2015.09.075. Frontier Detectors for Frontier Physics: Proceedings of the 13th Pisa Meeting on Advanced Detectors.
- ▶ K. Compton et al., "The MP7 and CTP-6: multi-hundred Gbps processing boards for calorimeter trigger upgrades at CMS", Journal of Instrumentation 7 (2012) C12024, doi:10.1088/1748-0221/7/12/C12024.
- ▶ M. Pesaresi, "Development of a new Silicon Tracker for CMS at Super-LHC". PhD thesis, Imperial College London, 2010.
- ▶ M. Pesaresi and G. Hall, "Simulating the performance of a pT tracking trigger for CMS", Journal of Instrumentation 5 (2010) C08003, doi: 10.1088/1748-0221/5/08/C08003.
- G. Hall, "A time-multiplexed track-trigger for the CMS HL-LHC upgrade", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 824 (2016) 292 295, doi:10.1016/j.nima.2015.09.075. Frontier Detectors for Frontier Physics: Proceedings of the 13th Pisa Meeting on Advanced Detectors.
- An FPGA-Based Track Finder for the L1 Trigger of the CMS Experiment at the High Luminosity LHC, Presented at 20th IEEE-NPSS Real Time Conference, Padua, Italy, 5-10 Jun 2016.
- D. Cieri et al, L1 track finding for a time multiplexed trigger, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Available online 19 October 2015, ISSN 0168-9002, http://dx.doi.org/10.1016/j.nima.2015.09.117.
- D. Cieri et al, Hardware Demonstrator of a Level-1 Track Finding Algorithm with FPGAs for the Phase II CMS experiment, proceeding from the ACAT2016 conference, IOP Publishing, Journal of Physics: Conference Series 762 (2016) 012020, doi: 10.1088/1742-6596/762/1/012020C.



## THANKS!

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n. 317446







Imperial College London













## BACKUP

### DATA ORGANISATION

detector to be interfaced to a first layer of off-detector hardware known as the Data, Trigger and Control (DTC) system

DTC to configure and read out tracker modules – including trigger data at 40MHz

total system to comprise 256 boards



32 DTCs control ~1900 modules (in 1/8 of tracker in φ, or 'octants')

DTC to also implement low level stub manipulation e.g. global coordinate conversion, duplication, routing to next layer (L1 Track Finder)

FE -> DTC output latency ~1μs

### DATA ORGANISATION

- Each "Track-Finding Processor" (TFP) is responsible for reconstructing all the tracks in one φ octant, known as a "processing octant"
- We rotate the "processing octant" by 1/2 octant w.r.t the "detector octant".
  - To reconstruct particles within its processing octant, a TFP never needs stubs from > 2 detector octants, despite track curvature.



### DATA ORGANISATION

- ► The DTC duplicates stubs in overlap region near processing octant boundaries (pink), & sends them to the two neighbouring processing octants.
  - No sideways communication is needed between Track Finding Processors from neighbouring processing octants.
  - Makes it natural to demonstrate system by building a TFP.



## GEOMETRIC PROCESSOR



- ▶ **Converts** stub data into a more useful data format
  - Reduced processing load downstream
- Divide each octant into 2Φx18η sub-sectors
  - Sector defined to reduce duplications
  - Tracks are found independently in each sub-sector
- Assigns each stub to the correspondent sub-sector(s)
- Average number of stubs per sector = 90

## GEOMETRIC PROCESSOR FIRMWARE



- ▶ GP firmware implemented on a single Virtex-7 FPGA
- Routes stubs from 72 input (DTC) to 36 output
  - maximum number of output stubs per channel = 175
- Stubs are first formatted and then routed through a three stage mash

#### HOUGH TRANSFORM FIRMWARE

- One HT array per GP output channel
  - ▶ 18 arrays per MP7 two boards needed
- ▶ Fully pipelined design @240 MHz, processing one stub per clock



- Book Keeper unpacks stub data from input link, then propagate them to first bin
  - Stubs then are transmitted from bin to bin, connected in daisychained fashion
  - Track candidates found by each bin are also propagated in the chain
- Book Keeper transmits out stubs from track candidates over output links



## SIMPLE LINEAR REGRESSION FITTER

- ▶ Tracks with sufficient  $p_T$  should draw a **straight line** on both **RΦ** and **RZ** planes
- ▶ The Simple Linear Regression algorithm performs two independent fits in the two planes

$$q/p_{T} = \frac{n\overline{r\phi} - \overline{r}\overline{\phi}}{n\overline{r^{2}} - \overline{r}} \qquad \tan \lambda = \frac{n\overline{rz} - \overline{r}\overline{z}}{n\overline{r^{2}} - \overline{r}}$$

$$\phi_{T} = \frac{\overline{r^{2}}\overline{\phi} - \overline{r}\overline{r\phi}}{n\overline{r^{2}} - \overline{r}} \qquad z_{T} = \frac{\overline{r^{2}}\overline{z} - \overline{r}\overline{z}}{n\overline{r^{2}} - \overline{r}}$$

- 1. Compute the **helix parameters** on the **RΦ** plane
- 2. Calculate the **RΦ residuals** and keeps only stubs within 5σ from fit line
- 3. Calculate again the **helix parameter** in **R\Pi** and in **RZ** (use only PS)
- 4. X<sup>2</sup> calculation and rejection of bad tracks



**LR MODULE** 

- Pipelined design with fixed latency (~190 ns)
- Fitting steps integrated into four submodules
- Uses mainly DSPs and a LUT to implement divisions

RΦ Helix Calculator Residual Calculator RΦ/RZ Helix Calculator Chi<sub>2</sub> Calculator

## **DUPLICATE REMOVAL**



- Simple duplicate removal algorithm
- Keep tracks, whose fit parameters are compatible with HT coordinates
- Second pass over rejected tracks to avoid loss in efficiency

- Duplicate Removal implemented in same chip as Track Filter and Fitter
  - Same implementation for both KF and SF+LR
- Fast pipeline design (38ns)





## DEMONSTRATOR RESULTS: RESOURCE USAGE

|                          | LUTs [10 <sup>3</sup> ] | DSPs | FFs [10 <sup>3</sup> ] | BRAM (36Kb) |
|--------------------------|-------------------------|------|------------------------|-------------|
| GP                       | 121                     | 1056 | 205                    | 222         |
| нт                       | 244                     | 2304 | 299                    | 1188        |
| TFF+DR                   | 512                     | 5184 | 526                    | 1434        |
| MP7 Infra                | 90                      | 0    | 91                     | 291         |
| Tot.                     | 877                     | 8554 | 1030                   | 2844        |
| Virtex-7 690             | 433                     | 3600 | 866                    | 1470        |
| Kintex<br>Ultrascale 115 | 633                     | 5520 | 1266                   | 2160        |

Final TFP board can be made of two or three Kintex Ultrascale 115 FPGAs