

CERN-IPMC Solution for AdvancedTCA Blades TWEPP 2017

CERN EP-ESE-BE

Vincent Bobillier, Stefan Haas, Markus Joos, Julian Mendez, Sylvain Mico and Francois Vasey

ATCA standard: Hardware Platform Management

□ Role of the Intelligent Controller for AdvancedTCA blades:

²x Redundant Radial Internet Protocol -Capable Transport

- Monitoring sensors
 - Voltages, temperatures ...
- Controlling the system
 - Power management, port/clock activation ...
- Ensuring proper operations
 - Compatibility between the different boards, hot swap, redundancy ...

13/09/2017

Outline

- □ General overview
- □ Mezzanine architecture
- □ Software architecture
- User customization
- □ Automatic tester
- Status
- Additional news

General overview

□ Adaptation of the Pigeon Point IPMC solution

- Mezzanine card designed at CERN
 - Compatible with already designed AdvancedTCA boards
 - Pinout compatible with the existing LAPP IPMC card
 - DIMM-DDR3 VLP form factor

General overview

- □ Supported features [fully tested]:
 - AdvancedTCA Rev.3.0
 - Hot swap (FRU info., handle switch, LEDs, Hardware address, etc.)
 - Sensor monitoring (SDR, measurement, events, etc.)
 - Rear Transition Module (intelligent and non-intelligent RTM)
 - AMCs (up to 8 AMCs + 1 iRTM)
 - Ethernet interface (RMCP/RMCP+, TPC/IP, UDP)
 - Serial interface (SoL or debug interface)
 - User I/Os (35 User I/Os + 16 IPM I/Os)
 - JTAG Master (Xilinx Virtual Cable daemon)

Mezzanine architecture

□ Based on a SmartFusion FPGA (Microsemi A2F200)

□ Software runs on an embedded SOC (ARM Cortex M3)

IDE used: SoftConsole v3.4

Software architecture

IPMC-config Header C files

- Treader C mes
 - Firmware configuration: LAN, AMCs, etc.
- FRU information
 - FRU configuration and binary files
- SDR information
 - SDR configuration and binary files
- → IPMC-core
 - Application
 - AdvancedTCA management functions
- IPMC-sensors
 - Drivers
 - Sensor management functions
- IPMC-tools
 - Python scripts
 - Python libraries used to generate the user configuration files
- IPMC-user
 - OEM commands
 - Callback functions
 - Init / Main-loop / Timer based user callback functions

User customization

□ User customizable features (mainly header files):

- FRU Information (Device ID, Manufacturer info., Product info.)
- LAN (MAC address, Default IP, slot specific IP, Gateway, Netmask)
- Modules (AMCs, iRTM/Non-intelligent RTM)
- Sensors
- E-Keying
- Power sequencing

Python tools to generate configuration files

h

Header Files

User customization

- → IPMC-config
 - Header C files
 - Firmware configuration: LAN, AMCs, etc.
 - FRU information
 - FRU configuration and binary files
 - SDR information
 - SDR configuration and binary files
 - IPMC-core
 - Application
 - AdvancedTCA management functions
 - IPMC-sensors
 - Drivers
 - Sensor management functions
 - IPMC-tools
 - Python scripts
 - Python libraries used to generate the user configuration files

IPMC-user

- OEM commands
- Callback functions
 - Init / Main-loop / Timer based user callback functions

Files generated by the python tool

Automatic tester

□ Used to verify the IPMC functionality after production

□ All of the interfaces are tested

Automatic tester

□ IPMC tester board connected to a shelf manager development kit from Pigeon Point

□ Software interface

- Offers automatic/manual test of IPMCs
- IPMI communication is based on a DLL written in C

Status

CERN-IPMC kit includes:

- Mezzanine card
- Pigeon Point licence fees
- Access to the Git repository
- Support
- Derice: 200.- Chf
 - Purchase contact: <u>epesebe-xtca-support@cern.ch</u>

□ Source code available on GIT

- Link: <u>https://gitlab.cern.ch/ep-ese-be-xtca/ipmc-dev</u>
- Distribution under NDA to be compliant with the Pigeon Point licence.
- Examples and readme.md file (start-up guide)

□ First batch of 52 IPMCs has been produced and is being tested

Being beta-tested by 2 users in ATLAS (MUCTPI) and CMS (Demonstrator).

xTCA Evaluation Project – EP-ESE-BE

Status

Being used by Atlas: MUCTPI

- ATCA management
- **I2C** interfaces
- **OEM** commands
- Xilinx Virtual Cable

 (only using Windows)

PMbus

13/09/2017

TWEPP 2017

Status

Being used with an ATCA demo board (CMS)

- □ Testing IPMC Ethernet/IPMI connectivity.
 - IPMI communication with hub/shelf manager
 - Ethernet communication to carrier switch
 - $\circ~$ Replacing the Ethernet PHY by a more recent one is evaluated
- Communication issues with the Shelf Manager
 - Works only with a specific configuration
 - Being currently evaluated

COM Express

Quad core Atom, Up to 2.2GHz, 8GB ram, 64GB flash

DC-DC : 48V -> 12V

PIM (Power Input Module)

IPMC - CERN

Additional news

Additional news

□ ATCA shelf tenders

	Horizontal shelf	Vertical shelf	-48Vdc PS
 Technical specification 	Q4 2016	Q4 2016	Q4 2016
 Technical evaluation 	Q1-Q2 2017	NA	NA
 CERN price enquiry 	Q2 2017	Q2 2017	Q3 2017
 Select contractor (pre-series) 	NA	Q3 2017	Q3 2017
 Full qualification 	NA	Q1 2018	Q4 2017

Goal: Procurement contracts ready for the user's purchase orders by Q1/Q2 2018.

□ AdvancedTCA rack evaluation

- Currently performed by the ATLAS technical coordination team
- Poster: ATCA Thermal Management Study for the ATLAS Phase-II Upgrade by Claudio Bortolin

Advanced TGA"

Thank you

julian.mendez@cern.ch

General overview

□ JTAG Master (XVCd):

Measured using Wireshark: network transactions