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1.1 Introduction / [ 16-inch rack gy 1.2 Correlation on failures with operating temperatures \

On the left, the racks containing LHC cryogenics instrumentation
electronics are shown. Those racks are placed at 2 LHC locations where
the most failures were observed during the periods 2008 - 2010 and
2014 - 2016. Each rack contains 3 or 4 double-level crates with various
electronic cards. The failing card type is shown with a dark purple
colour. The cards that actually failed are visualized with a blue square.
After the first period, some of those cards where upgraded to another
family as per updated requirements; no failures where observed at
those newer cards which operate at a lower supply current.

At the Large Hadron Collider (LHC), the cryogenics instrumentation
infrastructure uses fuse-protected high-voltage isolated temperature
transducer cards. Approximately 1200 such cards of different families are
installed and each of them is protected by a miniature fuse. The typical dc
current consumption of the electronic cards is 0.3 - 0.5 A. During the periods
2008 - 2010 and 2014 - 2016, spurious fuse faults were observed at one family
of cards operating at 0.5 A, whose fuse is based on a thin silver wire. Following
the failures of the period 2008-2010, the fuse rating was increased from 1 A to
1.25 A and there were no further issues till the period 2014-2016. A study was
launched to understand the underlying failure mechanism.
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Racks RR13.QYCO1 It was observed that the failures
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2. Weibull Reliability Analysis 3.1 Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS)
Weibull reliability analysis can be used to SEM & EDS of 2 samples, an unused reference fuse and a fuse that failed in the LHC, are shown below. It can be seen that the failed fuse has formed distinct
correlate failures, occurring over a period regions of material voids and depositions, an indication of electromigration as explained later. No spectral differences can be observed between the 2 fuses
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RR57 (17 failures). (13 failures). (12 failures). 1.25 A fuse operated for 16 hours at 1.5 A and then failed when 1.25 A rated fuse failure after operation for ~1 hour at 1.65 A. 1.25 A fuse which underwent 4320 ON/OFF cycles at 1 A and

n = 2215 days, B = 2.8. n = 1687 days, B = 3.43. n = 2323 days, B = 3.91. the current increased to 1.65 A. 576 cycles at 1.35 A. Fuse did not fail.
Reduced data set to compare with : : _— S _
period 2014-2016 for same
locations only.

The results of the Weibull reliability analysis are shown in the above charts.
Weibull B factors >> 1 indicate strong end-of-life wear-out failures. When
comparing periods 2008-2010 and 2014-2016, for the same LHC locations, it

becomes clear that the increase of the fuse rating led to an increase of the , A
MTTF (Mean Time To Failure) from 1687 to 2323 days but the underlying iy oot o i @ et ot i ot et i @R g e i @)
failure mechanism remained the same. 1.25 A fuse underwent 4320 ON/OFF cycles at 1 A and 576 cycles at 1.35 A. Fuse failed. Note that 1.25 A fuse operated 120 hours at 1 A and 16 hours at 1.35 A. Fuse did not fail. Note

. . e —— fuse element appeared initially intact with a low magnification optical microscope. that fuse element appears bright on a low magnification optical microscope having a
The MTTF increase can be explained by the P similar appearance to failed fuses removed from the LHC
mcc:jreasg of the fuse rating which refsull’f]ed f'n 4 Top left and top center: Fuse failures on overcurrent show spherical structures due to material melting.
;'el — (I)peratmg temperature o | tb B - Top right: Thermal cycling stresses (no failure) form “cracks” on the surface.
ilament (lower Ir1e5|stance).h As_pﬁr ah o]rcatgry 2 © Bottom left: Failures due to thermal cycling stress do not show spherical structures of melted material.
MEESLIEMEMS S @0 Ure Mg, Jue using = Bottom right: Extended operation at high currents revealed material transportation phenomena (electromigration) as seen on LHC samples.
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(typical card consumption is 0.5 A, loading of The SEM images revealed effects identical to electromigration. Electromigration is the transport of material due Anode B
(o) . . . .
fuses was decreased from 50% for the 1 A fuses  ruse filament temperature increase to the momentum transfer between conducting electrons and diffusing metal atoms. The dislocated atoms may —©
to 40% for the 1.25 A). versus In current (In, | nominal, as % of form voids at their original location and depositions at their final location. Conducting electrons
Usi h . . f th Arrheni fuse rating). Experimental temperature colliding with metallic ions
SING the apprOX|mat|0n or the rrnentus measurements were taken by a thermal

model, a 4.5 °C decrease W0U0|d lead to an  cameraonatransparently sealed fuse. Bibliography studies have shown that pure silver is highly susceptible to electromigration due to its low activation  yprr — inef—; Black’s equation on MTTF
Increase of MTTF by 40% which s energy and high mobility of its grain boundaries. Other metals such as aluminium and copper behave in a similar J
approximately the increase from 1687 to 2323 way. One of the methods for reducing the effects of electromigration is using alloys which tend to increase the £ Srstant J: Current density, : Temperature (kelvin)
days. activation energy and reduce the mobility of the grain boundaries. n: Scaling factor (typical 2)

4. Accelerated lifetime tests 5. Consolidation Year-End Shutdown 2016-2017

The typical resistance of an unused 1.25 A fuse iS ~82 [Location.crate.Channel [Resistance A fuse with a higher stated reliability was used. Due to limited time,
mOhm. Six fuses were removed from the LHC after [RR13.13.Top8/9 97.5 mOhm the new fuses were not tested under SEM/EDS to reveal their
operating for ~2000 days without a failure, their fin s >oro —fmamm composition but such a test will be performed in the future.
resistances are shown on the table on the right. The [rri7.21.Tops/7 88.5 mOhm In certain cases, the electronic cabinet separation was increased to
resistance increase is small taking into account ﬁii;ij?pgj g;mgﬁm improve the natural convection resulting in a lower fuse temperature.
measurements inaccuracies and fuse filament variations. S . Cooling fans were installed at some racks exhibiting higher

temperature values; reduction of 20 °C was achieved in one rack.

6. Summary/Conclusions

A family of electronic cards underwent failures over 2 periods 2008 - 2010
and 2014 - 2016. After the first period, the fuse rating was increased from
1 A to 1.25 A and no further failure was observed for ~4 years. Following
the failures of the second period and the analysis presented here, it was
concluded that the origin of the problem was electromigration and
therefore a low MTTF for the selected fuse and the operating conditions.
The manufacturer confirmed, on private communication, that the fuse has
a basic MTTF of only 125,000 hrs.

A highly accelerated lifetime test was performed in an effort to reproduce in
the laboratory the phenomena observed in the LHC and develop a method of
fault prediction. Four new fuses of the original failing type and other
candidates were tested. Below, only the data of the failing type is shown.

Fuse |Rating|Loading Conditions Measurements

84.4 mOhm @ 0d, 94.8 mOhm @ 7d, 93.8 mOhm @ 10d,
100.6 mOhm @ 15d, 270 mOhm @ 18d.

83.1 mOhm @ 0d, 85.9 mOhm @3d, 91.2 mOhm @ 8d,
91.3 mOhm @ 11d, 90.9 mOhm @ 14d.

#3 1A 80% |1day @ 125 °Cand 2 days @ 175 °C 112.3 mOhm @ 0d, found failed on day 3.

~112 mOhm @ 0d, 116.4 mOhm @ 4d, 124.8 @ 7d,
129.7 @ 12d, 137.9 @ 15d, failed found on day 18.

The accelerated test was run at temperatures of 150 °C and 175 °C greatly
exceeding the maximum operating conditions of the fuses. For operation at
175 °C, some of the failures were attributed to material damage due to this
high temperature. For the runs at 150 °C, there were not any material failures
observed, but the increased resistances do not match those of the 6 fuses

removed from the LHC. | ~—| R -
A predictive formula based on resistance measurements could not be derived ~ - g@ﬂ p@

from the LHC measurements and the highly accelerated lifetime test. eft: A cabinet with fimited airflow on top-most crate SANTA CRUZ INSTITUTE ~ TWEPP 2017
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e Statistical Weibull reliability analysis gave strong indications of the
wear-out failure mechanism.
Resistive measurements could not be reproduced by a highly
accelerated lifetime test in laboratory conditions in high operating
temperatures.
SEM analysis was proven to be a reliable and effective method of
assessing the status of the fuses. This method will become part of a
lifetime assessment tool for similar devices.

#1 [1.25A| 50% |1day @ 125 °C,2 days @ 175 °Cand 15 days @ 150 °C

#2 [1.25A| 80% |14 days @ 150 °C

#H4 1A 80% |18 days @ 150 °C




