CMOS Biochips: The Good, the Bad, and the Hype

Arjang Hassibi Founder/CEO, InSilixa, Inc.

QUESTION 1:

What is a Biosensor?

Biosensors: Basic Concept

Biosensors: Analytes

Detecting analytes in (aqueous) samples using "electronic" devices

Examples	Concentration (Copies/ml)	Types/Strains*	
Water	$\textbf{3.3}\times\textbf{10^{22}}$	-	
Glucose	10 ¹⁸	1	
Cholesterol	8×10^{17}	2	
Antibodies/Hormones	10 ⁸	> 10,000	
DNA for Forensics	107	20	
Upper Respiratory Viruses (<i>Flu A, Flu B, Rhinovirus,</i> etc.)	104	> 50	
HIV Virus in Blood	4×10^{2}	> 50	
M. Tuberculosis Bacteria	10 ²	> 300	
Bacteria in Blood	10	> 1000	
Food Poisoning Bacteria (Salmonella, Listeria, E. Coli)	1	> 50	

History

QUESTION 2:

What is a CMOS biochip (biosensor)?

CMOS Biochip Anatomy

Modified CMOS chips capable of parallel biosensing

BIOSENSOR "PIXEL"

Biosensing "Pixel" Structure

"Pixels" include bio-recognition elements (probes), transducer, and CMOS-integrated sensor

Parallel Detection: Multiplexing

Probes can define different molecular specificities at individual "pixels"

Creating CMOS Biochips

Manufacturing

CMOS chips are fabricated (steps 1 and 2) in semiconductor "eco-system"

Manufacturing

Bio-functionalization (step 3) is performed using automated assembly/spotting equipment

CVD SYSTEM

NON-CONTACT SPOTTING

QUESTION 3:

Are biosensing detection modalities CMOScompatible?

Versatility of CMOS

All relevant detection modalities are CMOS-compatible

CMOS biochip tailored for high-dynamic range (HDR) bioluminescence detection

UPLING

PAMP

PAMP

CMOS BIOCHIP

HDR ΔΣ Photosesnor

CMOS biochip tailored for high-dynamic range (HDR) bioluminescence detection

Micrograph

Bioluminescence DNA Sequencing

Ø

CMOS biochip with low noise charge sensor array

Micrograph

Switch-Capacitor Charge integrator w/ CDS

CMOS biochip with low noise charge sensor array

Micrograph

Charge-based DNA Sequencing

QUESTION 4:

What array densities and pixel sizes are required? What are the implications on performance?

Fundamental Limits

Application Overlay

Cost Overlay

QUESTION 5:

What is the HYDRA platform?

HYDRA Platform

Detection pathogens (viruses and bacteria) through DNA analysis

Identification Method

"Amplifying" the Signal Biochemically

Known DNA sequences can be exponentially replicated through PCR thermo-cycling processes

Parallel Detection (Multiplexing)

Multiple PCR reactions in a single chamber to identify multiple sequences (organisms)

Biochip Concept

A biosensor array to detect all of the generated amplicons

HYDRA-1K Biochip Module

A disposable CMOS biochip module with flow-through fluidic system

CMOS IC

1024 integrated DNA biosensors with integrated heater

Pixel Structure

Continuous wave (CW) fluorescence detection for biosensing

Specifications

Fluorescence biosensing requires a high dynamic range detector

Pixel Architecture

Photocurrent (I_{ph}) detection using a 1st-order $\Sigma\Delta$ current sensor

Pixel Circuitry

Forward path (—) and feedback path (—)

Pixel: Current Integrator

Pixel: Quantizer and S&H

Pixel: Layout and SEM Cross Section

Array Architecture

Temperature Sensor

Resistive heater structure to uniformly heat the entire chip

Photodiode Q.E.

Linearity ($\lambda_x = 495$ nm)

Experimental Setup

Multiplex PCR Setup

Multiplex PCR, capture and detection in ~2 hours

Melt Curve Results

Melt results for ~100 copies/ μ l of FluA and FluB virus input

*Relative fluorescence unit

Viral Signatures

Measured melt signature for all inputs

Conclusion

<u>The Good:</u> Ideal technology for point-of-care (PoC) and mass deployment molecular diagnostics?

<u>The Bad:</u> Complex and capital intensive manufacturing/assembly processes; requires convergence of multiple disciplines beyond engineering

<u>The Hype:</u> An overpromised field with lots of unproven technologies and failed projects, and limited successful commercial products

Small Differences Matter

1.5% DNA Difference

Albert Einstein (1879-1955) Bobo the Chimp (1995-Now)

Biosensors: Random Numbers

Examples	Concentration (Copies/ml)	Types/Strains	Reimbursement (US)	Tests per Year (US) (Millions)	Consumer Application	"Electronic" Solution
Water	$\textbf{3.3}\times\textbf{10^{22}}$	-	-	-	-	-
Glucose	10 ¹⁸	1	\$10	700	+++	
Cholesterol	8 × 10 ¹⁷	2	\$15	> 500	+/-	
Antibodies/Hormones	10 ⁸	> 10,000	\$15 - \$100	> 2000	++	
DNA for Forensics	107	20	\$500	50	-	
Upper Respiratory Viruses (Flu A, Flu B, Rhinovirus, etc.)	104	> 50	\$550	10	+++	
HIV Virus in Blood	4×10^{2}	> 50	> \$100	25	+/-	
M. Tuberculosis Bacteria	10 ²	> 300	NA	0.2	+/-	
Gram Negative Bacteria in Blood	10	> 1000	> \$200	50	-	
Food Poisoning Bacteria (Salmonella, Listeria, E. Coli)	1	> 50	> \$100	100	++	

(Almost) Fabless Manufacturing

Measured Dark Current (I_D)

Measurement Process

Correlated double sampling (CDS) to measure I_D and signal

