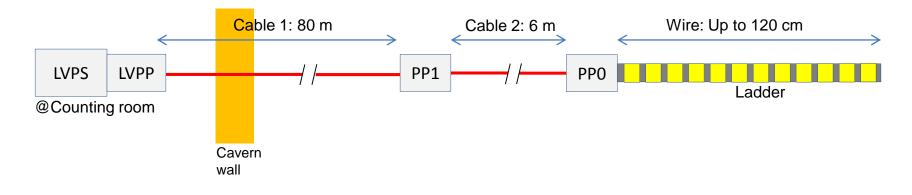
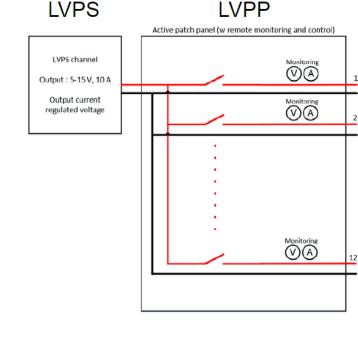


Options for LV production and distribution From common project study to CMS OT use case



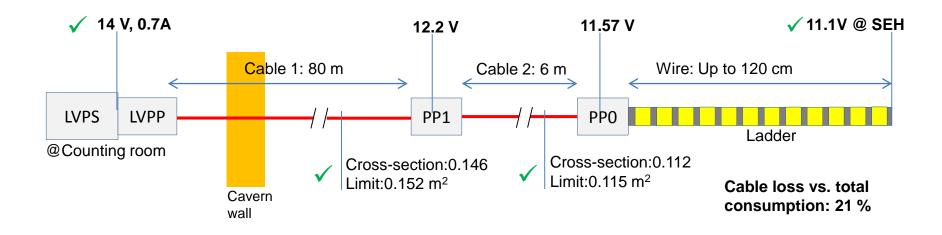
Common Project

FV 13 Sep 2017



Reminder: Originally proposed distribution scheme and demonstration target

3 distinct building blocks considered

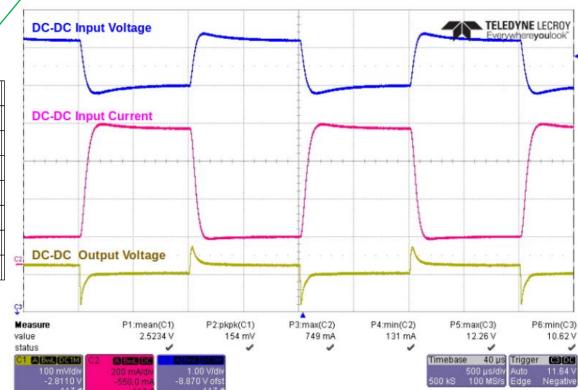

- LVPS
 - In counting house
 - Output range: 15V max, 15-20A max
 - □ Relaxed noise/ripple characteristics TBC
 - Regulation mode TBD and tested
- LVPP
 - □ 12 out. channels, max: 15V/2A
 - 0.7A per channel
 - □ Minimum control: Imon. and ON/OFF
- Cabling
 - Overall max Vdrop: 3V
 - Cross section constraints
 - Material budget from PP1 onwards

Design

Based on custom cables designed by and procured from Habia Cables

- See poster by V. Bobillier https://indico.cem.ch/event/608587/contributions/2614651/contribution.pdf 1 single cable / ladder (from PS to PP0) including LV, HV and returns \checkmark
- Cross section limits respected \checkmark
- Cabling extended from PP1 to CR \checkmark
- Voltage drop from LVPS to POL DC/DC converter limited to 3V \checkmark
- Aluminum wires between PP1 and modules \checkmark
- Shielding: Al film with drain wire (PS to PP0) \checkmark
- 2 multi-purpose pairs included \checkmark

Feasibility Demonstration (1)


Based on custom Habia Cables and COTS LVPS

- Power supply output voltage: 12.37V
- Load in transient mode
- $\bullet\,$ Current settings at load: 0.5A 2.5A
- Frequency : 500Hz
- Slew Rate : $5A/\mu Sec$

Input Voltage (Max.)	12.26 V
Input Voltage (Min.)	10.62 V
Input Voltage Mean	11.44 V
Input voltage Peak to Peak	$1.64 \mathrm{~V}$
Input Current (Max.)	749 mA
Input Current (Min.)	131 mA
Output Voltage Mean	2.52 V
Output Voltage Peak to Peak	$154 \mathrm{mV}$

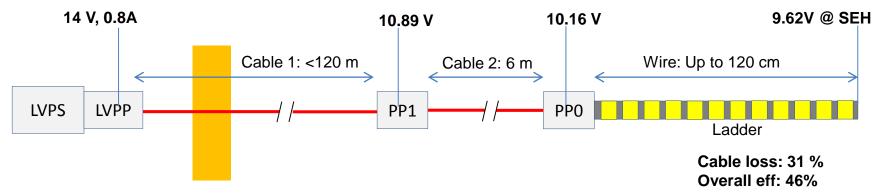
Despite large input swing, DC/DC converter performs well

Max input voltage well within DC/DC converter operating range, cable mostly resistive

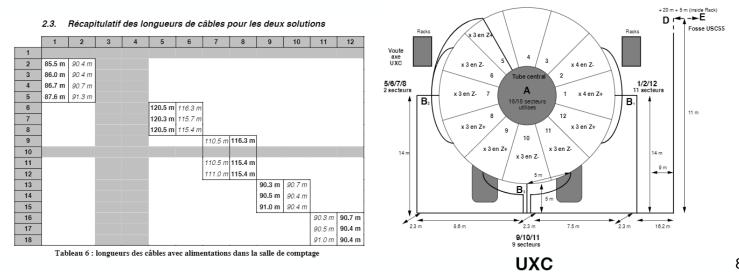
FV 13 Sep

Feasibility Demonstration (2)

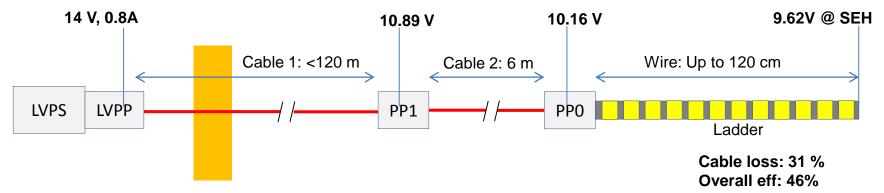
Simulation of longer cable lengths: is inductive behavior observed?

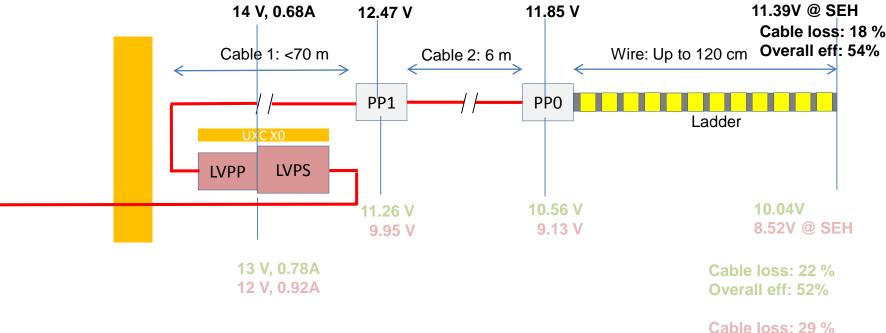


Use case in CMS outer tracker

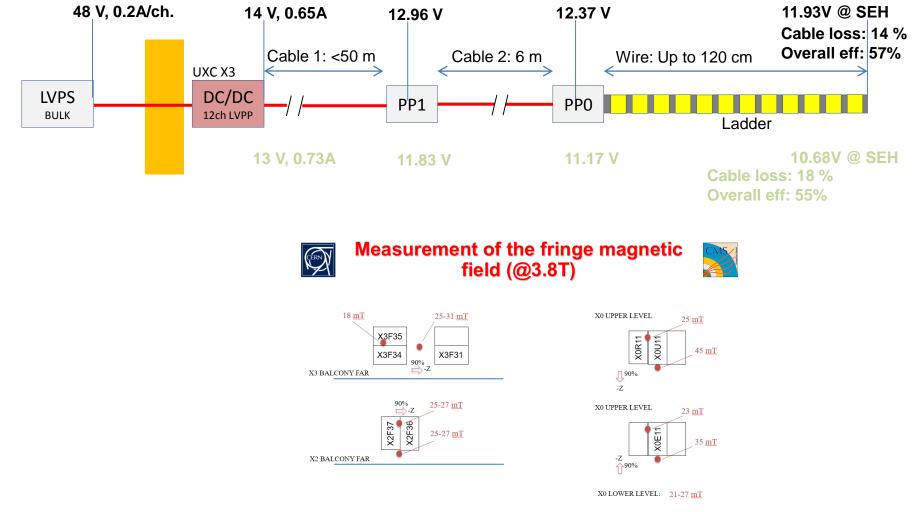

FV 13 Sep 2017

- **Option 1**: As originally proposed, Lcable1<120m (was 80m)
 - the cable length, the space in USC and the cable channel availability seem to be problematic, especially considering the emerging needs of other detectors
 - NB: has not been confirmed by dedicated analysis

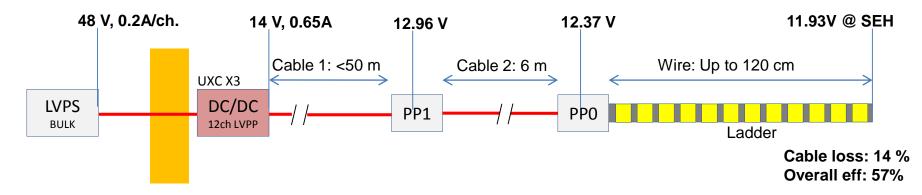

Length from USC much dependent on the actual location in USC FAR side more distant (~ 20 m) than NEAR side



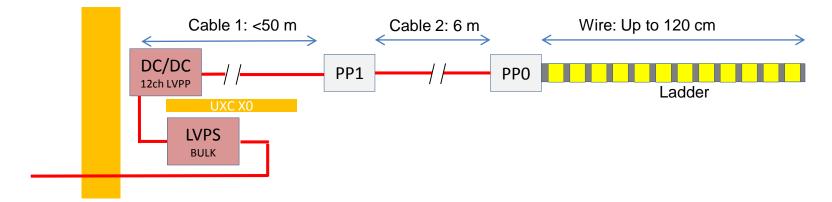
Option 1: As originally proposed



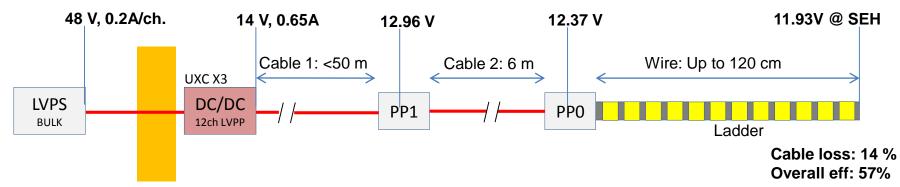
- **Option 2**: Shortening Cable 1 length (assume -50m length reduction)
 - Room UXC-X0 provides shielding from radiation but the stray field is <500G



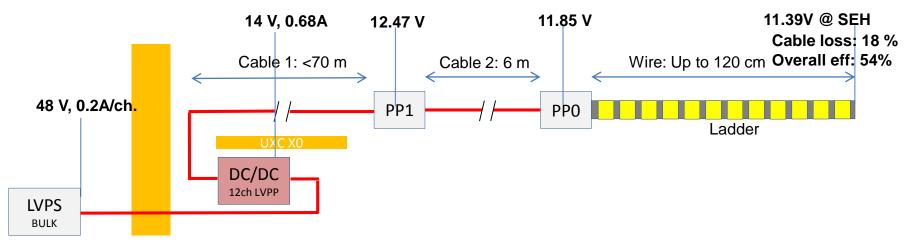
- **Option 3**: Introducing an intermediate DC/DC converter stage
 - Improves supply efficiency and reduces footprint on USC floor space
 - Development of rad and magnetic field tolerant power supply module is required
 - *TID<10Gy, B<500G*



- **Option 3**: Introducing an intermediate DC/DC converter stage
 - Improves supply efficiency and reduces footprint on USC
 - Development of rad and magnetic field tolerant power supply module is required
 - TID<10Gy, B<500G



- Option 3b: Completely relaxes impact on USC
 - not much different from option 2 (cable 1 is shorter) while more complex



- **Option 3**: Introducing an intermediate DC/DC converter stage
 - Improves supply efficiency and reduces footprint on USC
 - Development of rad and magnetic field tolerant power supply module is required
 - *TID<10Gy, B<500G*

• Option 3c: Shielding DC/DC module

Relaxes radiation tolerance constraint, but stray field is still <500G

Tentative Requirements (1):

- Bulk LVPS
 - 12-14V (options 1 or 2)
 - Pmax=300W (P=150Wmax in operation, i.e. 50% nominal loading)
 - Iout max 20A
 - +/- 50V floating range
 - Remote on/off and thresholds control (OPC, SNMP or equivalent)
 - Adjustable OVV and OVC thresholds
 - <200mVpp ripple&noise</p>
 - 1% line and load regulation
 - Bfield < 500G (if installed in UXC-X0, option 2)
 - Connects to distribution LVPP
 - 14 channels
 - *lout max 1.5A per channel (Imax=0.8A in operation)*
 - Per channel on/off control and current monitoring
 - OVV (?) and OVC protection
 - 48V (options 3, 3b or 3c)
 - *P*=300W
 - Excluding possible HVPS need
 - Iout max 6A
 - <600mVpp ripple&noise</p>
 - 1% line and load regulation
 - Remote on/off and thresholds control (OPC, SNMP or equivalent)
 - Adjustable OVV and OVC thresholds
 - Bfield < 500G (if installed in UXC-X0, option 3b)

Tentative Requirements (2):

- DC/DC Converter
 - Vin: 48V
 - Vout: 10-14V
 - Pmax=300W (P=150Wmax in operation, 50% nominal loading)
 - *lout max 1.5A per channel (Imax=0.8A in operation)*
 - +/- 50V floating range
 - Remote on/off and thresholds control (OPC, SNMP or equivalent)
 - Adjustable OVV and OVC thresholds
 - 14 channels
 - <200mVpp ripple&noise</p>
 - 1% line and load regulation
 - OVV (?) and OVC protection
 - Vmon, Imon, on/off control
 - Interlock with HVPS to be discussed
 - Bfield < 500G (if installed in UXC-X0, option 3 or 4)
 - TID < 10Gy (if installed in UXC-X3, option 3)