

Bulk power for CMS 20170913

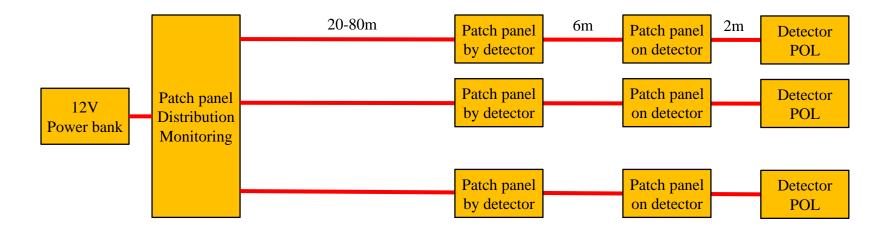
M. Hansen, CERN S. Lusin, CMS TC / UW

Bulk power system

• Exploit the fact that we know our environment

- Compare to initial construction
- Allow smaller safety factors

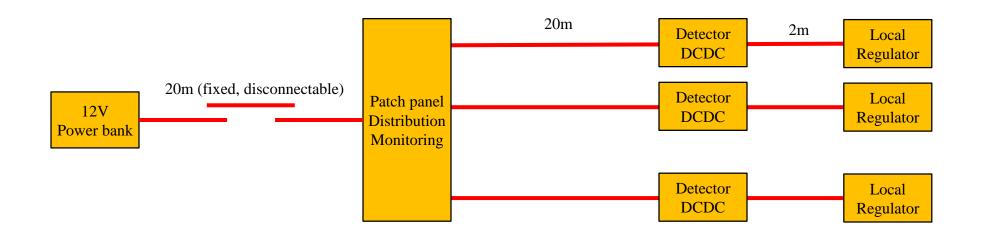
Bulk power system


• Tracker

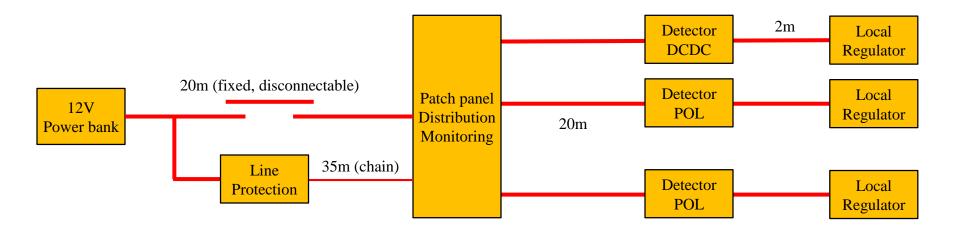
- Will make use of DCDC converters in or close to the front end
- Remote bulk supply
- "Fine grain" power distribution, safety and monitoring
- System will need some space in USC55 for controls
- Barrel Calorimeters
 - Similar to Tracker
- Endcap calorimeter
 - Under study; potentially different to barrel as supplied through cable chain or due to internal space limitations

- 100kW
- This implementation
 - may, depending on the location of the active components, require radiation and / or magnet field qualified equipment

Barrel Calorimeter



- 200kW
- This implementation
 - implies radiation and magnetic field tolerance qualification of the active equipment



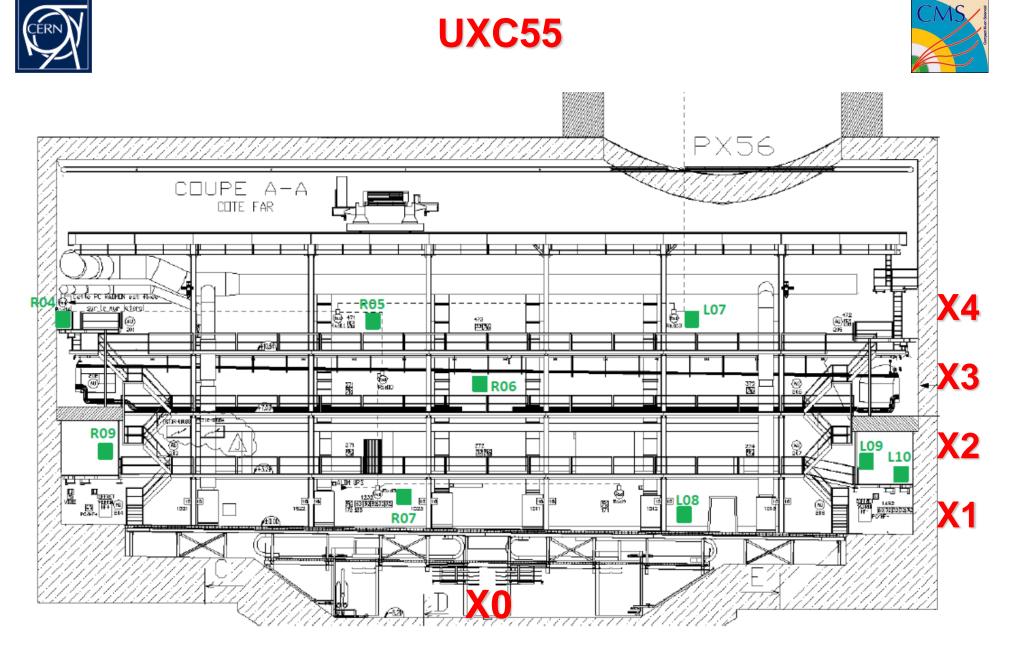
- 100kW + 100kW
- This implementation
 - Allows operation only in a discrete number of positions, e.g. fully closed and fully opened

- 100kW + 100kW
- This implementation
 - Allows full operation in a discrete number of positions, e.g. fully closed and fully opened and partial operation, e.g. monitoring, in any position

Requirements

• Requirements

- About 12V; not much higher at any time
- Modular
- High availability: configured for n+1 or n+2 redundancy
- Wishes
 - Light and compact
 - → To make carrying around less demanding
 - Affordable
 - → Low cost would not hurt unless quality suffers
 - → Generally means high volume COTS

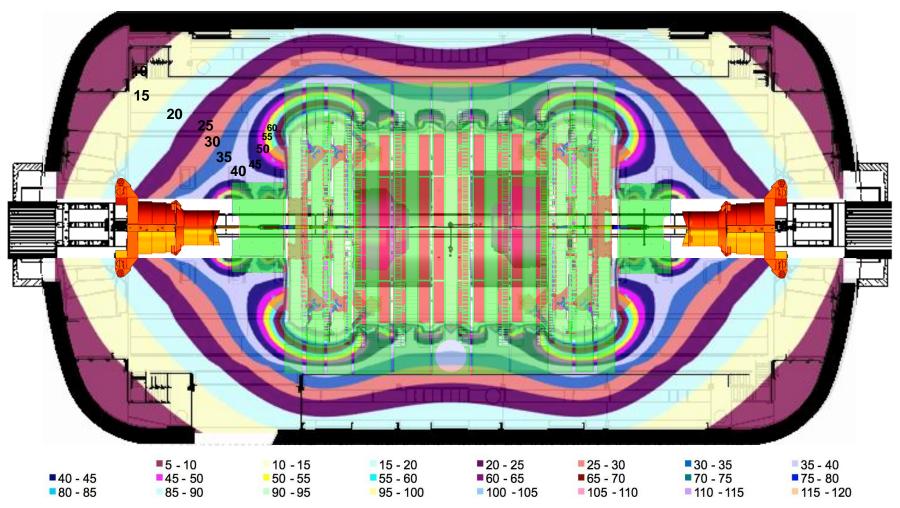


Requirements

• In addition...

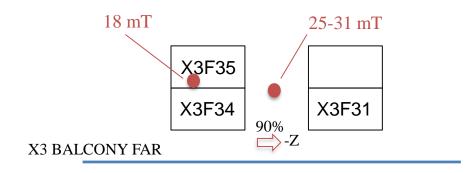
- Sufficiently magnetic field tolerant
 - → 200 Gauss < Fringe field in CMS cavern < 1100 Gauss
 - $\ensuremath{\,\cong}$ 200 Gauss in X0 and balconies, 1200 in towers around the crack between YB and YE
 - → Qualification procedure required
- Sufficiently radiation tolerant

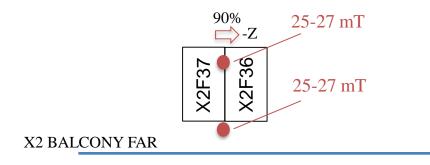
Radiation levels

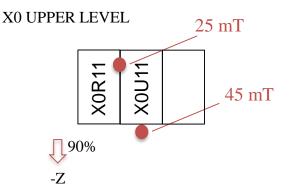

• Low total dose in X0

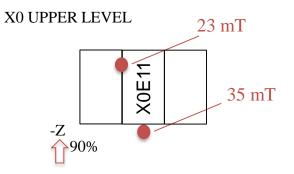
- Estimation after 3000 fb-1:
 - → Hadrons > 20 MeV = 2.1*108/cm2
 - → 1 MeV-equivalent neutrons = 6.7*109/cm2
- Source: CMS BRIL
- Will have to deal with SEE
 - SEU, SEB
 - i.e. how do the PS fail following SE?
- What about X3/X4?
 - Will be determined after further simulation by CMS BRIL

CMS magnet fringe field in UXC55 with 3.8T at IP Scale in mT, from 0 to 120 mT, with 5 mT increment Horizontal mid-plane Y=0


Prepared by B. CURE with data from V. KLYUKHIN November 2010


M. Hansen, CERN, S. Lusin, UW/TC



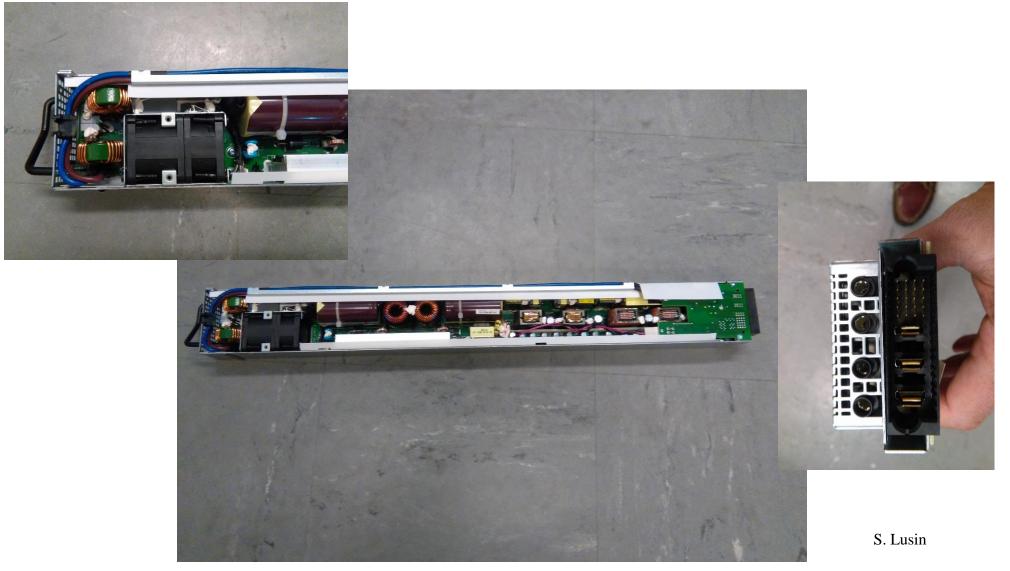

Measurement of the fringe magnetic field (@3.8T)

X0 LOWER LEVEL: 21-27 mT

Nicola Bacchetta, Wolfram Zeuner May 19th 2016

COTS Candidate / test engine

- PowerOne PFE3000-12-069RA
- 12v 3kW (244A), 94% efficient
- <u>http://www.digikey.com/product-detail/en/bel-power-solutions/PFE3000-12-069RA/179-2714-ND/4439947</u>
 - 31 in stock 20160429
 - 937USD for one, 8000 USD for 10 pc
 - Estimated product life beyond 10 years



S. Lusin

Bulk power discussion 20170913

M. Hansen, CERN, S. Lusin, UW/TC

Magnetic field test

S. Lusin

Magnetic field test

19 Oct 16 Om side B. Field Testins of Bel 3kw supply B P KVA KVAR PF DPF I; I., 133 ,77 .78 .10 99 99 3.48 59.5 255 ,77 ,47 .10 .99 .99 3.43 59.1 PFE 3000 - 12 - 069RA 12V 336 .76 .77 . 10 .99 .99 3.42 58.9 load is ~ 100m of 476 .96 .97 . 10 .99 . 99 3.42 58.8 561 ,77,79.10.98.99 3.48 58.8 10 mm² wire 615 .78 .79 . 11 .99 .99 3.48 59.2 -> at ampacity limit -> GGOG already too much FWBell Wire heads up: current Gaoss Meter takes ~ 10 min to For speeds up at 500-600 @ Madel 4048 sourbilize from cold start N Horsz Calib magnets B.f.eld P KVA KVAR PF DPF Im Io Bloe 5.56 KG .17 hw .78 ,14 .98 .99 5.44 59.0 OG Red 5.63 119 .77 77 . 10 . 99 .99 3.43 59.2 Yel 5.55 224 .76 .77.10 .99.99 3.43 59.0 Grn 5.87 333 .77 .47 . 10 .99 .99 5.42 59.0 371 .78.78.10.99.99 3.45 59.2 1400 = suggly unstable goes into "corrent polsing" mode S. Lusin, B. Cure

Bulk power discussion 20170913

M. Hansen, CERN, S. Lusin, UW/TC

Magnetic field test

B. Field Testins of	Om side
Bel 3kw supply	B P KVA KVAR PF DPF J; I. 133, 17, 78, 10, 99, 99 348 59.8
PFE 3000 - 12 - 069RA 121	255 ,77 .47 .10 .99 .99 3.43 59.1 336 .96 .77 .10 .99 .99 3.42 58.9
load is ~ 100 m of 10 mm² wire	476 .96 .97 .10 .99 .99 3.42 58.8 561 .97 .74 .10 .98 .99 3.48 58 .8
-> at ampacity /smit	615 . 78 . 79 . 11 .99 .99 3.48 59.2
FUBEL Wire heads up wint Trans Meter takes ~ 10 min to Matel 4048 start like from cold Start Horiz	-> 660 G already to much fan speeds up at 500-600 G M
B. f. old P KVA KVAR PF DPF Im I.	Calil magnets
06 .17 kw .18 ,14 .98 .99 sty 59 119 .99 .97 .10 .97 .99 343 59,2 224 .76 .97 .10 .99 .99 343 59,0 333 .97 .94 .10 .99 .99 3.43 59.0 371 .78 .78 .10 .99 .99 3.45 59.2 2400 \$ suggly unstable B ^{oes} into "correns polsing"	Bloe 5.56 KG Red 5.63 Yel 5.55 Grn 5.87

Bottom line

- Tolerates 400g from side
- Tolerates 600g from top
- Tolerates 250g longitudinal
 - → A different test in the M1 magnet at CERN

S. Lusin, B. Cure

Front end power distribution

• Finer granularity than a single bulk supply

- Line protection
- Over/Under voltage protection
- Voltage monitoring
- Current monitoring
- (Power monitoring)
- Example COTS
 - LM25066: System Power Management and Protection with monitoring through PMB (essentially I2C)
- Backend could be an ELMB+ system

Front end power distribution

- Final development, production and maintenance by Industrial partners
 - Tuned to requirements for different users, e.g.
 - → Trip current depending on cabling to detector
 - → Combine LV and bias distribution for silicon trackers

- Demonstrate feasibility and reliability
 - Performed 3D magnetic field tolerance mapping in M1 magnet
 - Install demonstrator in UXC55 X0 lower floor for long term (B field) verification
- Mixed field radiation studies
 - @ Charm (CERN)
 - Need to determine how an SEE affects an n+1 or n+2 redundant power supply system

- Collaboration with industry for development of power distribution and monitoring system
 - Positive feedback from industrial partners, e.g. CAEN
 - Tuned to each subsystem