

By Joseph Lykken and Maria Spiropulu

Supersymmetry and the PISIS PARTICLE PHYSICS DIVISIOS

Supersymmetry postulates that every known parti- Physicists hoped to find evidence of supersymmetry cle has a hidden superpartner. Physicists love super- in experiments at the Large Hadron Collider (LHC). To symmetry because it solves a number of problems date, they have not. If no evidence arises in the next that crop up when they try to extend our under- run of the LHC, supersymmetry will be in trouble. standing of quantum mechanics. It would also poten- The failure to find superpartners is brewing a crisis in tially solve the mystery of the universe's missing physics, forcing researchers to question assumptions dark matter.

from which they have been working for decades.

The big picture

Eight years of searches.

• Extensively searched in all possible directions

• Done more than expected, with new ideas and original approaches to data taking

• Our new-physics target evolved towards more complicated scenarios

• EXAMPLE: the SUSY we search for today is very different than what is in the ATLAS/CMS TDRs

ATLAS SUSY Searches* - 95% CL Lower Limits

AT

LAS Preliminary
$\sqrt{s} = 7, 8, 13 \text{ TeV}$
Reference
1712.02332
1711.03301
1712.02332
1712.02332
1611.05791
1706.03731
1708.02794
1607.05979
_AS-CONF-2017-080
AS-CONF-2017-080
1502.01518
1711.01901
1711.01901
1708.09266
1706.03731
2, ATLAS-CONF-2016-077
16, 1709.04183, 1711.11520
1711.03301
1403.5222
1706.03986
1706.03986
_AS-CONF-2017-039
_AS-CONF-2017-039
1708.07875
_AS-CONF-2017-039
_AS-CONF-2017-039
1501.07110
1405.5086
1507.05493
_AS-CONF-2017-080
1712.02118
1506.05332
1310.6584
1606.05129
1604.04520
1710.04901
1411.6795
1409.5542
1504.05162
1607.08079
1404.2500
_AS-CONF-2016-075
1405.5086
SUSY-2016-22
1704.08493
1704.08493
1710.07171
1710.05544
1501 01325

• We started looking for mSugra-inspired models. Thanks to large gluino and squark cross sections, exclusions became soon very strong

• We then moved to Natural-SUSY scenarios, with focus on t and b squarks

We moved to simplified models as a generalization of search strategies (with 100% BR assumptions)

• We recently generalized simplified models to BR-independent results

And we extended model interpretation to large-dimensional scans (pMSSM)

SUSY: a moving target

We started looking for mSugra-inspired models. Thanks to large gluino and g squark cross sections, exclusions became soon very strong

We then moved to Natural-SUSY scenarios, with focus on t and b squarks

We moved to simplified models as a $\tilde{\chi}^{\circ}$ generalization of search strategies (with 100% BR assumptions)

We recently generalized simplified models to BR-independent results

And we extended model interpretation to large-dimensional scans (pMSSM)

became soon very strong

• We then moved to Natural-SUSY squarks

(with 100% BR assumptions)

Research

We started looking for mSugra-inspired models. Thanks to large gluino and squark cross sections, exclusions became soon very strong

• We then moved to Natural-SUSY scenarios, with focus on t and b squarks

We moved to simplified models as a generalization of search strategies (with 100% BR assumptions)

• We recently generalized simplified models to BR-independent results

And we extended model interpretation to large-dimensional scans (pMSSM)

SUSY: a moving target

We started looking for mSugra-inspired models. Thanks to large gluino and squark cross sections, exclusions became soon very strong

We then moved to Natural-SUSY scenarios, with focus on t and b squarks

We moved to simplified models as a 1000 generalization of search strategies (with 100% BR assumptions)

We recently generalized simplified models to BR-independent results

And we extended model interpretation to large-dimensional scans (pMSSM)

(a) All LSP types

- Today's BSM search today expanded in many new directions
 - Better identification of complex
 objects (e.g., tau leptons, b-jets)
 - New Standard Model candles (e.g., the Higgs boson)
 - New reconstruction strategies (e.g., boosted jets)
 - Better understanding of the detector
 → better sensitivity to soft particles
 - More and more exotic signatures: displaced vertices, disappearing tracks, heavy stable charged particles, etc

- Today's BSM search today expanded in many new directions
 - Better identification of complex objects (e.g., tau leptons, b-jets)
 - New Standard Model candles (e.g., the Higgs boson)
 - New reconstruction strategies (e.g., boosted jets)
 - \bullet Better understanding of the detector $\overline{\mathbf{R}}$ \rightarrow better sensitivity to soft particles
 - More and more exotic signature GMS
 displaced vertices, disappearing tracks, heavy stable charged a particles, etc

- Today's BSM search today expanded in many new directions
 - Better identification of complex
 objects (e.g., tau leptons, b-jets)
 - New Standard Model candles (e.g., the Higgs boson)
 - New reconstruction strategies (e.g., boosted jets)
 - Better understanding of the detector
 → better sensitivity to soft particles
 - More and more exotic signatures:
 displaced vertices, disappearing tracks, heavy stable charged particles, etc

Research Council

- Today's BSM search today expanded in many new directions
 - Better identification of complex
 objects (e.g., tau leptons, b-jets)
 - New Standard Model candles (e.g., the Higgs boson)
 - New reconstruction strategies (e.g., boosted jets)
 - Better understanding of the detector → better sensitivity to soft particles
 - More and more exotic signatures:
 displaced vertices, disappearing tracks, heavy stable charged particles, etc

- Today's BSM search today expanded in many new directions
 - Better identification of complex objects (e.g., tau leptons, b-jets)
 - New Standard Model candles (e.g., the Higgs boson)
 - New reconstruction strategies (e.g., boosted jets)
 - Better understanding of the detector
 → better sensitivity to soft particles
 - More and more exotic signatures: displaced vertices, disappearing tracks, heavy stable charged particles, etc

In the rest of this talk, I will give some highlight example of how BSM searches @LHC evolved

• I will not discuss the implications of LHCb anomalies (dedicated flavor session)

• I will then cover new strategies to extend our reach, to give you a sense of what is happening and could happen in the future

• CAVEAT: the picture is much broader than what I can discuss in 30 minutes

Talk Outline

KUN II HIGNIGNTS: Resonances

• ATLAS and CMS were designed (also) to probe the TeV scale

• We did very well in searching for TeV objects

• Even if we often assume narrow width, mass-peak searches have potential to wide resonances

• Other techniques allow to probe wide resonances beyond the bump-hunt scenario

From heavy to light

• Even if we width, mass potential to

• Other techn probe wide the bump-hu

• ATLAS and CMS were designed (also) to probe the TeV scale

• We did very well in searching for TeV objects

• Even if we often assume narrow width, mass-peak searches have potential to wide resonances

• Other techniques allow to probe wide resonances beyond the bump-hunt scenario

From heavy to light

light Z'→qq with ISR recoil

- Extending these searches to the small-mass/small-coupling regime implies dealing with trigger constraints
- To overcome this, analyses are moved to X+ISR final states (e.g., jet, γ)
- Selecting high-pT ISR recoil allows to use standard triggers

 ● Forcing the X→qq system in a boosted regime allows better S/B thanks to jet substructure

light Z' \rightarrow qq with ISR recoil

- Extending these searches to the small-mass/small-coupling regime implies dealing with trigger constraints
- To overcome this, analyses are moved to X+ISR final states (e.g., jet, γ)
- Selecting high-pT ISR recoil allows to use standard triggers

 \odot Forcing the X \rightarrow qq system in a boosted regime allows better a S/B thanks to jet substructure

light $Z' \rightarrow qq$ with ISR recoil

- Extending these searches to the small-mass/small-coupling regime implies dealing with trigger constraints
- To overcome this, analyses are moved to X+ISR final states $(e.g., jet, \gamma)$
- Selecting high-pT ISR recoil allows to use standard triggers

• Forcing the $X \rightarrow qq$ system in a boosted regime allows better S/B thanks to jet substructure[#]

light $Z' \rightarrow qq$ with ISR recoil

22

• With muons, one can even go *lower in momentum, exploiting* multiple production mechanisms (e.g., for dark photons)

- at ATLAS/CMS, looking for pair production, production from H decays, etc
- at LHCb, looking for prompt production, thanks to detector geometry, rapidity region, high-rate trigger capabilities, and the sensitivity to displaced objects

• With muons, one can even go *lower in momentum, exploiting multiple production* mechanisms (e.g., for dark photons)

• at ATLAS/CMS, looking for pair production, production from H decays, etc

• at LHCb, looking for prompt production, thanks to detector geometry, rapidity region, high-rate trigger capabilities, and the sensitivity to displaced objects

• With muons, one can even go *lower in momentum, exploiting multiple production* mechanisms (e.g., for dark photons)

- at ATLAS/CMS, looking for pair production, production from H decays, etc
- at LHCb, looking for prompt production, thanks to detector geometry, rapidity region, high-rate trigger capabilities, and the sensitivity to displaced objects

Dark Photons

Council

Run II Highlights: long-living particles

Uhat a LLP looks like in a detector

• Signatures can be very tricky

• Depending on the lifetime, different detector components are involved

• Some of these detectors cannot be operated in L1 trigger (and sometimes also at HLT)

• Trigger can be a challenge

• More than one analysis is needed for a given model, depending on the parameter space

Uhat a LLP looks like in a detector

• Signatures can be very tricky

• Depending on the lifetime, different detector components are involved

• Some of these detectors cannot be operated in L1 trigger (and sometimes also at HLT)

• Trigger can be a challenge

More than one analysis is needed for a given model, depending on the parameter space

- Reconstruction of displaced jets
 g
 has very specific challenges
 - physics background from b and τ jets
 - Projective geometry of the jet compromised (problematic e.g. for association of tracks to jets in particle flow)
 - Displacement exploitable in trigger only starting from HLT
- Despite these difficulties, several analyses exist that probe this scenario. Example: inclusive search for displaced*jets events*

• For smaller lifetimes, displacement becomes typically small

• NP particles would decay in the inner tracker

• can use pixel vertexing in all its power

• have physicsinduced SM backgrounds to deal with

Displaced Vertices

• Disappearing tracks happen when

- the LLP comes with charge
- it decays to an invisible particle
- the mass difference is small (i.e., any other decay product *is undetectable*)
- Can be exploited with different detectors, depending on lifetime
- That's why it is important to go closer and closer to the beam

Disappearing Tracks

Very clean signature->can be ~ background-free search

		-		
run period	leptons	est. event count fake tracks	total	observation
2015	$0.12^{+0.11}_{-0.08} \pm 0.01$	$0^{+0.079}_{-0}$ $^{+0.025}_{-0}$	$0.12^{+0.14+0.03}_{-0.08-0.01}$	1
2016B+C	$1.99 \pm 0.42 \pm 0.11$	$0.38 \pm 0.19^{+0.41}_{-0.38}$	$2.38 \pm 0.46^{+0.43}_{-0.40}$	2
2016D-H	$3.07 \pm 0.63 \pm 0.22$	$0.91 \pm 0.35 \pm 0.91$	$3.98 \pm 0.71^{+0.93}_{-0.94}$	4
total	$5.18 \pm 0.76 \pm 0.25$	$1.3\pm0.4\pm1.0$	$6.48 \pm 0.86 \pm 1.03$	7

Reinterpreting Prompt Searches

• Prompt analyses are sensitive to small displacements (i.e., to small lifetime)

- This is why some traditional prompt analysis was recasted to long-living particle scenarios
- The result is already good in probing large portion of parameter space
- The deterioration of sensitivity with lifetime is less pronounced than what would expect

in the trigger system

\odot Too many data, too large data \rightarrow need to filter online

• Filters based on pheno bias: we might be loosing good events

- Offline: global, software based, on CPU, @CERN TO

▶ L1 trigger: local, hardware based, on FPGA, @experiment site ► HLT: local/global, software based, on CPU, @experiment site Analysis: user-specific applications running on the grid

- Run reconstruction in the trigger farm
- floats) for more events
- Probes <u>unexplored territory</u>, previously left behind

<u>Problem: practical (so far) only for specific topologies</u>

35

• Avoid resource limitations: write less information (a few

In Run I, dijet search was the first BSM analysis published by CMS

• Quickly forced to reduce mass range under investigation, due to increasing trigger rates vs limited resources

• Scouting was introduced to recover the lost territory (500 to 1100 GeV)

• Quick improved results from Tevatron in a wide range of mass spectra

<u>The first attempt</u>

							23/10/111	ue 23.00. 3.012. 1237	
DAQ state Running	Run Num	ber 9 g	Lv1 rate 85.516 kHz	Ev. <s< td=""><td>ize> kB [346.6]</td><td>DeadTime 4,136</td><td>e(AB) St % 40</td><td>ream A</td><td>HLT <cpu> 76.78 %</cpu></td></s<>	ize> kB [346.6]	DeadTime 4,136	e(AB) St % 40	ream A	HLT <cpu> 76.78 %</cpu>
Ranning	1,5555		55.510 KHZ	510.0	[5 10:0]			1.91 112	0.000
Dat	a to Surfac			CM at				Data Flaw	
Dat	a to Surrac	.е	c .	SIM ST	reams	top by #ev		Data Flow	
Sub-System	State	RL FED IN	Stream	No.Events	Rate (HZ)	BNW (MB/S)			
TRG	Running	3 3 3	NanoDST	8.142E+6	8302.33	15.99	/cdaq/pł	iysics/Run2011/5e33/v	2.2/HLT/V2
CSC	Running	9 9 9	ALCAP0	6.214E+6	6576.29	13.25	#LS 79	PreShower HV ON	Random ON Bhysics ON
DAQ	Running	0 0 0	ALCALUMIPI	937.883E+3	511.07	21.34	PreScaleIndex	Tracker HV ON	CalibCure ON
DQM	Running	0 0 0	ALCAPHISYM	890.653E+3	484.61	3.41	1 I	Pixel HV ON	CalibCyc ON
DI	Running	6 6 6	PhysicsDST	741.287E+3	716.37	5.44		Physics DECLARED	
ECAL	Running	54 54 54	A	205.483E+3	401.31	136.01	#Lv1(GT)	84773130	62 FEDCRC
ES	Running	39 39 39	Calibration	177.867E+3	97.28	3.44	Lv1 Rate	85.795 kHz	
HCAL	Running	26 26 26	EcalCalibrati	177.866E+3	97.25	2.60			EBLOCC %
HELUMI	Running	6 6 6	RPCMON	153.959E+3	224.18	4.06	Pending Lv1		Max 7
PIXEL	Running	40 40 40	Express	17.201E+3	31.20	10.53	109869		Min 0
SCAL	Running	3 3 3	HLIMON	2.837E+3	4.59	1.63	#Frag. in RU		EBO occ %
TRACKER	Running		FackerCallb	1.273E+3	48.82	0.76	Max 674		Max 33
CASTOR	Running	250 438 437	FaultyEvents	0.000E+0	0.00	0.00	Min 448		Min 0
CASTOR	Kunning	3 3 3	Enor	0.000E+0	0.00	0.00			
node: PROTON PHYSIC	S, STABLE BEAMS			_			BnW (MB/s)		EvSize (kB)
							4.35E+4		518.2
					- 100.0	% 2E+7	Events in BU		
				Comment of the second s	ل، ۲۰	1.8F±7	280		
						1.0047	<ev.> 0.3</ev.>		
				ſ	1100-1I	1.6E+7	Pending Req.		RceivDisc.
					- 10.0 %	6 	24520		23520
					J I	1.4E+7	<#P> 24.5		<time ev.=""></time>
					·~	1.2E+7 ₩	#Running FUs		86.2 xx
						orec	10327		103 24
					- 1.0 %	1E+7 🦿	10010078		<fu-cpu></fu-cpu>
				. J		8F+6	A	406.71 Hz	0 100
				1		0210 V	BnW MB/s>	Disks usage 🔒 0100 %	<sm-cpu></sm-cpu>
						6E+6	223		39.5 %
	······································				-0.1%	4E+6	EventRate Hz		Free space TB
	<u>6</u>	ů.	0 00	ſ		4640	17739.7		226.1
	662	000	562			2E+6	Stored	18087730	
							Time to fill	disk 0 of srv-c2c0	06-14 > week
51:26 22:01:26	22:11:26 2	2:21:26 22	:31:26 22:41:2	6 22:51:26	23:01:25	0E+0		TIERO TRANSFER ON	
10/11 26/10/11	26/10/11 20	6/10/11 26	/10/11 26/10/1	1 26/10/11	26/10/11			TIEKU_TKANSFEK_ON	
Local time:	Geneva	23:01.	Los Ange	les 14:0	1. Chica	igo 16:0	1. Moscov	v 01:01. Be	iiina 06.01

<u>The first attempt</u>

Uhat we accomplished

- Recovered sensitivity to 500 GeV resonances
- Reached limitation
 of L1 seed-> need to improve our hardware trigger (more on this later)

• Now extending the method to more final states (collected x3 more data than the rest of CMS in 2017)

1.2

1.6

1.4

1.8

Jata-Fit

0.6

0.8

8 9 9

• Kept sensitivity Coupling to 500-1500 GeV resonances

• Current *limitation is L1* efficiency

• Can probe lower couplings by collecting more data

go

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

• Kept sensitivity to 500-1500 GeV resonances

• Current limitation is L1 efficiency

• Can probe lower couplings by collecting more data

Uhat we accomplished

An established approach

Available on the CERN CDS information server

CMS PAS EXO-11-094

CMS Physics Analysis Summary

Contact: cms-pag-conveners-exotica@cern.ch

2012/07/11

Search for Narrow Resonances using the Dijet Mass Spectrum in pp Collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

(CERN) CERN-EP/2016-090

CMS-EXO-14-005

NOW

Go

Search for narrow resonances in dijet final states at $\sqrt{s} = 8$ TeV with the novel CMS technique of data scouting

The CMS Collaboration*

Abstract

A search for narrow resonances decaying into dijet final states is performed on data from proton-proton collisions at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 18.8 fb^{-1} . The data were collected with the CMS detector using a novel technique called data scouting, in which the information associated with these selected events is much reduced, permitting collection of larger data samples. This technique enables CMS to record events containing jets at a rate of $1 \, \text{kHz}$, by collecting the data from the high-level-trigger system. In this way, the sensitivity to low-mass resonances is increased significantly, allowing previously inaccessible couplings of new resonances to quarks and gluons to be probed. The resulting dijet mass distribution yields no evidence of narrow resonances. Upper limits are presented on the resonance cross sections as a function of mass, and compared with a variety of models predicting narrow resonances. The limits are translated into upper limits on the coupling of a leptophobic resonance Z'_{B} to quarks, improving on the results obtained by previous experiments for the mass range from 500 to 800 GeV.

Submitted to Physical Review Letters

Abstract

or new particles decaying to a pair of jets in pp collisions at ample for events with dijet invariant mass above 0.9 TeV corted luminosity of 5 fb⁻¹ collected by the CMS detector at the id the sensitivity in the 0.6-0.9 TeV range, a complementary rformed employing a special dataset with reduced event conan integrated luminosity of 0.13 fb⁻¹ and collected in the last sking period. We set specific lower limits on the mass of string arks, axigluons, colorons, s8 resonances, E6 diquarks, W' and itons in the 0.6-4.3 TeV range, most of which extend previous ≥t mass search technique.

• CMS uses Scouting since 2011 and now extended it to other final states

• LHCb planned during Run I a gradual move to online upgrade for Run III)

• ATLAS is producing trigger-level analyses since 2015 (start of Run II)

• ALICE is also moving to a real-time processing for Run III

A direction to explore in order to push sensitivity to new physics beyond the current technical limitations

processing for the full physics program (TurboStream + HLT

• BSM searches deeply evolved since the LHC started

• With stringent bounds being put with early data, new analyses focused on more complicated scenarios

I ight resonances

- weak couplings
- exotic signatures

• So far, we manage to sustain the increasing challenges of the LHC experimental environment

• recovered lost territory with new ideas (e.g., scouting)

scaling current techniques vs. foreseen computing power)

• LHCb flavor anomalies are opening the possibility to surprises

• Synergy between direct searches and indirect constraints

• Focus even more than in the past on 3rd generation

• not clear what will happen in the future (HL-LHC poses clear problems with

European Research

ιαι Γεπαικ: τι με μυτιει of precision erc

No New physics: surprised?

- New physics at high scale could also be probed using quantum effects
 - heavy particles could "run" in the loops and shift observables vs SM expectation
 - This can happen at many levels
 - Flavor physics
 - \bar{B}_s • EW physics

47

- LHC
- new physics energy scale
 - for 4 parameters)

ledge

Flavor Anomalies

- LHCb reported very interesting anomalies, questioning lepton *universality*
- A confirmation at 5σ significance would change the picture above
 - would imply upper bound on the New Physics energy scale
 - would point the finger to a specific class of models (Z', fundamental or composite leptoquarks, ...)
- Not all anomalies necessarily point to the same new-physics scale

A surprise to come?

52

Implications for ATLAS and CMS

• This is pushing ATLAS and CMS to investigate more 3rdgeneration final states

53

- Much of these final states are already searched for
- Other bounds can be obtain re-interpreting existing analyses

- Production in association with bb also part of this model
 model
- Direct translation of the result in terms of the Z' advocated for flavor anomaly
- Strong bound derived here, but much more data (and more collision energy?) needed to push search at tens of TeV

- Production in association with bb also part of this model
 model
- Direct translation of the result in terms of the Z' advocated for flavor anomaly
- Strong bound derived here, but much more data (and more collision energy?) needed to push search at tens of TeV

- in Run I
- data
- pushing sensitivity forward

<u>eptoquarks</u>

- in Run I
- data
- pushing sensitivity forward

<u>eptoquarks</u>

Research