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MOTIVATION:

... To myself, I seem to have been only like a boy
playing on the seashore, and diverting myself in
now and then finding a smoother pebble or a
prettier shell than ordinary whilst the great ocean
of truth lay all undiscovered before me.

Isaac Newton

e The ocean is now charted up to
E <10° GeV, 1> 10717 cm.

e But it extends up to Mp ~ 10'Y GeV. We
have now explored its 10~ -th part.

PROBLEMS IN QUANTUM (AND CLASSICAL) GRAVITY:

e Nonrenormalizability

e Non-causality. Closed time loops. Para-
doxes.



TOE = strings?

e No fundamental quantum string theory

e No phenomenological successes.

An alternative (dream) solution: [A.S., 2005]

Our Universe as a soap film in a flat higher
dimensional bulk. The TOFE s a field theory in

this bulk. Gravity etc is an effective theory living
on the film, like

Hyoop =0 A = 0/d2:1:\/§



TRY

1

5= o

Tr{FynFun}d’z,
inD=6 M,N=20,1,2,3,4,5.

e Dimensionful coupling constant, nonrenor-
malizable

A SECOND TRY

£D:6 — (XTT{FMVDFMV} ‘|‘ BTr{FuVFyaFau}

e o, 7 are dimensionless, renormalizability
e Includes higher derivatives

But GHOSTS appear
e In a ghost system the Hamiltonian has no
ground state. No vacuum in field theory. It is
inherent for all higher-derivative theories.



OSTROGRADSKY HAMILTONIAN

M. Ostrogradsky [1801-1862] is known by

e Ostrogradsky theorem from vector analysis
e Ostrogradsky method for calculating [ P(z)/Q(z) dx.

e Ostrogradsky Hamiltonian

In the paper

IM. Ostrogradsky, Mémoire sur les équations
différentielles relatives au probleme des isopérimetres,
Mem. Ac. St. Petersbourg VI 4 (1850) 385.]

he reinvented the Hamiltonian formalism and
applied it to higher-derivative theories.

e Consider L(x, T, ).
e FEquation of motion:

P (OL\ _d (0L\ 0L _ |
dt2 \ O dt \ O or

e Conserved energy:

.OL . (OL dOL




e Treat v = = as an independent variable and
define

_ 0L 0L
Po = 50 = 05’
oL

Px = % — DPv
e Canonical Hamiltonian:

H(pmpm;’vax) — pv@+pxx._[/ —
pva,(p,u,x,v) +pCEU —L[a,(p,u,x,v),a?,v] )

where a(p,,z,v) is the solution of the equation
OL(x,v,a)/0a = p,.

e Linear term p,v —

Theorem 1: [Woodard, 2015] The classical en-
erqgy of a nondegenerate higher-derivative system
can acquire an arbitrary positive ot negative value.

also

Theorem 2: [Raidal + Veermae, 2017| The spec-
trum of a Hamiltonian of a higher-derivative sys-
tem 1s not bounded neither from below, nor from
above.
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e This phenomenon is sometimes called “Os-
trogradsky instability”, but:

e It is not an instability,

e was noticed first not by Ostrogradsky.

Arnold’s principle: If a notion bears a personal
name, then this name is not the name of the dis-
coverer.

(self-referential).
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PAIS-UHLENBECK OSCILLATOR [1950]

Consider
1. .
L = 5 (3% — (wi +w3)i” + wiwsz?]

e Ostrogradsky Hamiltonian:

9 9 2\, .2 9 2 9
Py  (wi +wiv WiwaT

H = _
P+ 75 9 2

e Canonical transformation:

X1 —= 1 p\x—l_w%v Plz—’l, 6 = Wi p\v—l_ng
w1 /w2 — w2’ 0Xy Vi -3

~ 2 ~ 2

wix A ) BELY)

X, = Pt Py=—i 2 = Pet

/2 2"’ 2 2

(w1 > wy was assumed).

e In these variables,

P2 4+ w2 X2 B P? + wiX3
2 2 .

H =

The spectrum is

1 1
E,.. = <n+§>w1— (m+§>w2

with positive integer n, m.
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e All states are normalizable (“pure point”).
Infinite degeneracy if wy/wo is rational. Every-
where dense if wq /ws is irrational.

UNUSUAL BUT NOT SICK!



UNITARITY CONFUSION
Consider

ﬁ = wlaial — w2&2ax$-
e Ordinary “vacuum” |®) with aq|®) = as|P) =

0 is in the middle of the spectrum.
e Introduce the state |®) satisfying

a1 |®) = al|P) = 0

and consider the tower of states

Then H|®) = 0,
ﬁ|1> — f](ag@) — —wgagagaz :w2a2|§>> = wo|1)

and H|n) = nwa|n).

e The spectrum is positive definite. One can

rename ap — b;, a; — ba.



THE PRICE

o [bo,b5] = —1 and hence |1) = b}|®) has a
negative norm:

AL) = —(Blbabld) = —(B]d) = —1.

and the whole tower |n) are not in L.

IT IS BETTER NOT TO THINK IN THESE TERMS!
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BENDER AND MANNHEIM PROPOSAL
Consider

]512 —I—w%X% ]522 +w§X22

H = —
2 2

and assume X to be real and X, purely imaginary.
Then the normalizable wave functions involve
a factor

and the spectrum is positive definite.

e This is a different spectral problem.

e Just no need to do this.
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PATH INTEGRAL CONFUSION [Hawking + Hertog, 2002]
e The Minkowski Lagrangian path integral

~ /Hd:c(t) exp {i/dtL(:}j,gt,x)} (1)

e The corresponding Hamiltonian path integral

N / TT da(t)dv(t)dp.(t)dp. ¢)

xp{i [ tipui +psi ~ Hipopsiva) b

Substitute here the Ostrogradsky Hamiltonian
and integrate over | [, dp,(t). We obtain the factor

[ [ o) —i@)].

Integrating further over | [, dv(t)dp,(t), we de-
rive (1).

e The Euclidean rotation ¢ — —¢7 in the Hamil-
tonian integral (2) is impossible. The integral

[1) _inres {[arpain) 1597~ o0

diverges.
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e Fuclidean rotation t — —¢7 in the Lagrangian
integral (1) is possible, the integral may converge,
but its analytic continuation into Minkowski space
does not give a unitary evolution.

CONCLUSION:

Fuclidean path integrals (in constrast to
Minkowski ones) are not defined for
higher-derivative systems.
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INCLUDING INTERACTIONS
Consider the Lagrangian [A.S., 2005]

1 1
L = 5 [5152 — 2wE? + w4x2] — Zozx4.

Equation of motion:

2 °
(Eerz) r—ard = 0.

fixed point:

z(0) = #(0) = #(0) = ®(0) = 0.

e Stable trajectories for small deviations (the
island of stability).

e Collapse (the system runs to the infinity at
finite time) for large enough deviations.
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ON THE SHORE OF THE STABILITY ISLAND
2
1.5
1
S

0.

t“lnl““n“l““Ag“‘l t
O

- 1°

A similar stability island for another HD sys-
tem 1n

[S.N. Carrol, M. Hoffman, and M. Trodden,
PR D68 (2003) 023509]
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AN EXAMPLE OF COLLAPSE: FALLING TO

THE CENTER
Consider p
V(T’) = — 7“_2

with mk > 1/8.

e Spectrum is not bounded from below.

e Schrodinger problem is not well defined.

If one smoothes the singularity,

Vir) = ——, r>a,
T
Vi) = -=. r<a,

the spectrum is bounded, but depends on a.
e Violation of unitarity (probability “leaks”
into the singularity).

AN OBSERVATION:

e [f quantum theory is sick, so is its classical
counterpart. If classical theory is benign, so is its
quantum counterpart.
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INTERACTING SYSTEMS WITH BENIGN
GHOSTS
[D. Robert + A.S., 2006]

S = /dtd@‘d@ [%ﬁ@%p@ﬂ/(@) |

with the real (0+41)-dimensional superfield
d = ¢+ O+ + DO

e An extra time derivative.
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The Hamiltonian

H = pP — DV'(¢) + fermion term

is not positive definite.

e 4-dimensional phase space (p, ¢), (P, D).
e T'wo integrals of motion: H and

P2
N = 5 + V(o).
e [ixactly solvable.
o Take 2p2 4l
y = YO A0
2 4

e The solutions to the classical equations of
motion are expressed via elliptic functions.
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e Linear growth for D(t); ¢(¢) is bounded. No
collapse.

e Other benign ghost systems:
[Pavsic, 2013; Ilhan+Kovner, 2013]
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QUANTUM PROBLEM

is also exactly solvable.

bands of
continuum spectrum

infinity of
localized states

Spectrum of the Hamiltonian H = pP + DV’ (¢).
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Mixed model

L = / d0do [%(D@)%(D@) + %ﬁcbDCI) + V(D)

Physics is similar to the model with v = 0, but

e Not integrable anymore.
e No linear growth for D(?).
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I\ u M

Figure 1: The function D(t) for a deformed system
(w=0,A=1,7v=.1).
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UNUSUAL ALGEBRAIC STRUCTURES

e canonical Nother supercharges

Q = ¥lp+iV/(@)] - (X+5v) (P—iD),
Q = (@5 - %x) (P+1iD) — x[p —iV'(x)] .
e and the extra pair

T = Ylp—iV' @)+ (Y +30) (P+iD),

T = (@Z+%X) (P—1iD)+ x[p+iV'(x)] .
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e When v = 0, we have a semidirect product
of the standard N' = 4 SUSY algebra

{Q7 Q} — {T7 T} =2H

(but Q #QT, T #TTY)
and the Abelian Lie algebra generated by

p
F = 9 —xx

Nonvanishing commutators

{Q,Q}:{T,T}:QH;
[QaF]:Qa [QaF]:_Qa [TvF]:_Tv [TvF]:T5
T

QN =N =21 gN =N =9
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e When v # 0, the algebra is deformed:

e Let H = Hy — vF/2 and introduce F; =

Xy, F_=1x
then

[le:aF]::FQlez) [F+7F—]:F7

[QaHO] — _%Q7 [QaHO] — %Q?

T, Hy] = %T, T, Hyl = — LT,

Q. Fl=-Q, [Q F]=Q,

T,F|=T, [T,F]=-T,

Q,F_]=1T, [Q,F{]=-T,

T,F_]=-Q, [T,F{]=Q,

{Q,Q} =2Ho —vF, {T,T} =2H, ++F,
{Q, T} =2vF,, {Q,T}=2yF_.

N |2
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e This is osp(2,2) algebra.
e a close relative of weak supersymmetry alge-
bra [A.S., PLB 585 (2004) 173].
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(1+1) FIELD THEORY
e Let ® depend on t and x. Choose

S — / dtdxdfdd [-2iDPO, DD + V (D)] ,

where 01 = (0 +9,)/2 and

o . _ 0 =
D—@+108_, D—a—e——298_|_

Bosonic Lagrangian

Lp = 0,60,D+ DV'(¢)

2 12 4
V(g) = “’f +Ajf L A>0.

Equations of motion:

O¢p + w?p+ Ap® = 0
0D + D(w” +3X¢%) = 0. (3)

e Only two integrals of motion: the energy and

- faliferme] 522
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e Not exactly solvable.
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e Stochasticity. Solved numerically.
e Finite spatial box. Different initial condi-
tions.

TYPICAL BEHAVIOR:

1o} . . .

Dispersion d = /(D?), as a function of time.
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SWEET DREAM

The T'OFE 1s a higher-deriwative field theory with
benign ghosts living i a higher-dimensional flat
space-time. Qur Universe represents a 3-brane —
a solitonic solution extended in three spatial and
the time directions and localized in the extra di-
mensions. Gravity arises as effective theory on the
world volume of this brane.
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