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MOTIVATION:

... To myself, I seem to have been only like a boy

playing on the seashore, and diverting myself in

now and then finding a smoother pebble or a

prettier shell than ordinary whilst the great ocean

of truth lay all undiscovered before me.

Isaac Newton

• The ocean is now charted up to
E <∼ 103 GeV, l >∼ 10−17 cm.

• But it extends up to MP ≈ 1019 GeV. We
have now explored its 10−16-th part.

PROBLEMS IN QUANTUM (AND CLASSICAL) GRAVITY:

• Nonrenormalizability

• Non-causality. Closed time loops. Para-
doxes.
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TOE = strings?

• No fundamental quantum string theory

• No phenomenological successes.

An alternative (dream) solution: [A.S., 2005]

Our Universe as a soap film in a flat higher
dimensional bulk. The TOE is a field theory in

this bulk. Gravity etc is an effective theory living
on the film, like

Hsoap = σA = σ

∫

d2x
√

g

0-2



TRY

S = − 1

2h2

∫

Tr{FMNFMN} d6x ,

in D = 6, M, N = 0, 1, 2, 3, 4, 5.
• Dimensionful coupling constant, nonrenor-

malizable

A SECOND TRY

LD=6 = αTr{Fµν¤Fµν} + βTr{FµνFναFαµ}

• α, β are dimensionless, renormalizability
• Includes higher derivatives

But GHOSTS appear
• In a ghost system the Hamiltonian has no

ground state. No vacuum in field theory. It is
inherent for all higher-derivative theories.
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OSTROGRADSKY HAMILTONIAN

M. Ostrogradsky [1801-1862] is known by

• Ostrogradsky theorem from vector analysis

• Ostrogradsky method for calculating
∫

P (x)/Q(x) dx.

• Ostrogradsky Hamiltonian

In the paper
[M. Ostrogradsky, Mémoire sur les équations

différentielles relatives au problème des isopérimètres,
Mem. Ac. St. Petersbourg VI 4 (1850) 385.]

he reinvented the Hamiltonian formalism and
applied it to higher-derivative theories.

• Consider L(x, ẋ, ẍ).
• Equation of motion:

d2

dt2

(

∂L

∂ẍ

)

− d

dt

(

∂L

∂ẋ

)

+
∂L

∂x
= 0 .

• Conserved energy:

E = ẍ
∂L

∂ẍ
+ ẋ

(

∂L

∂ẋ
− d

dt

∂L

∂ẍ

)

− L .
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• Treat v = ẋ as an independent variable and
define

pv =
∂L

∂v̇
=

∂L

∂ẍ
,

px =
∂L

∂ẋ
− ṗv ,

• Canonical Hamiltonian:

H(pv, px; v, x) = pv v̇ + pxẋ − L =

pva(pv, x, v) + pxv − L [a(pv, x, v), x, v] ,

where a(pv, x, v) is the solution of the equation
∂L(x, v, a)/∂a = pv.

• Linear term pxv −→
Theorem 1: [Woodard, 2015] The classical en-

ergy of a nondegenerate higher-derivative system
can acquire an arbitrary positive ot negative value.

also
Theorem 2: [Raidal + Veermae, 2017] The spec-

trum of a Hamiltonian of a higher-derivative sys-
tem is not bounded neither from below, nor from
above.
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• This phenomenon is sometimes called “Os-
trogradsky instability”, but:

• It is not an instability,

• was noticed first not by Ostrogradsky.

Arnold’s principle: If a notion bears a personal
name, then this name is not the name of the dis-
coverer.

(self-referential).
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PAIS-UHLENBECK OSCILLATOR [1950]

Consider

L =
1

2

[

ẍ2 − (ω2
1 + ω2

2)ẋ2 + ω2
1ω2

2x2
]

• Ostrogradsky Hamiltonian:

H = pxv +
p2

v

2
+

(ω2
1 + ω2

2)v2

2
− ω2

1ω2
2x2

2

• Canonical transformation:

X1 =
1

ω1

p̂x + ω2
1v

√

ω2
1 − ω2

2

, P̂1 ≡ −i
∂

∂X1
= ω1

p̂v + ω2
2x

√

ω2
1 − ω2

2

,

X2 =
p̂v + ω2

1x
√

ω2
1 − ω2

2

, P̂2 ≡ −i
∂

∂X2
=

p̂x + ω2
2v

√

ω2
1 − ω2

2

.

(ω1 > ω2 was assumed).

• In these variables,

H =
P̂ 2

1 + ω2
1X2

1

2
− P̂ 2

2 + ω2
2X2

2

2
.

The spectrum is

Enm =

(

n +
1

2

)

ω1 −
(

m +
1

2

)

ω2

with positive integer n, m.
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• All states are normalizable (“pure point”).
Infinite degeneracy if ω1/ω2 is rational. Every-
where dense if ω1/ω2 is irrational.

UNUSUAL BUT NOT SICK!
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UNITARITY CONFUSION
Consider

Ĥ = ω1a
†
1a1 − ω2a2a

†
2 .

• Ordinary “vacuum” |Φ〉 with a1|Φ〉 = a2|Φ〉 =
0 is in the middle of the spectrum.

• Introduce the state |Φ̃〉 satisfying

a1|Φ̃〉 = a†
2|Φ̃〉 = 0

and consider the tower of states

|n〉 =
an
2

n!
|Φ̃〉

Then Ĥ|Φ̃〉 = 0,

Ĥ|1〉 = Ĥ(a2|Φ̃) = −ω2a2a
†
2a2 = ω2a2|Φ̃〉 = ω2|1〉

and Ĥ|n〉 = nω2|n〉.
• The spectrum is positive definite. One can

rename a2 → b†2, a†
2 → b2.
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THE PRICE

• [b2, b
†
2] = −1 and hence |1〉 = b†2|Φ̃〉 has a

negative norm:

〈1|1〉 = −〈Φ̃|b2b
†
2|Φ̃〉 = −〈Φ̃|Φ̃〉 = −1 .

•

|Φ̃〉 = exp
{

−ω1

2
X2

1

}

exp
{ω2

2
X2

2

}

and the whole tower |n〉 are not in L2.

IT IS BETTER NOT TO THINK IN THESE TERMS!
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BENDER AND MANNHEIM PROPOSAL
Consider

H =
P̂ 2

1 + ω2
1X2

1

2
− P̂ 2

2 + ω2
2X2

2

2
.

and assume X1 to be real and X2 purely imaginary.
Then the normalizable wave functions involve

a factor

exp
{

−ω1

2
X2

1

}

exp
{ω2

2
X2

2

}

.

and the spectrum is positive definite.

• This is a different spectral problem.

• Just no need to do this.

0-11



PATH INTEGRAL CONFUSION [Hawking + Hertog, 2002]

• The Minkowski Lagrangian path integral

∼
∫

∏

t

dx(t) exp

{

i

∫

dt L(ẍ, ẋ, x)

}

(1)

• The corresponding Hamiltonian path integral

∼
∫

∏

t

dx(t)dv(t)dpx(t)dpv(t)

exp

{

i

∫

dt [pv v̇ + pxẋ − H(pv, px; v, x)]

}

. (2)

Substitute here the Ostrogradsky Hamiltonian
and integrate over

∏

t dpx(t). We obtain the factor

∏

t

δ[v(t) − ẋ(t)] .

Integrating further over
∏

t dv(t)dpv(t), we de-
rive (1).

• The Euclidean rotation t → −iτ in the Hamil-
tonian integral (2) is impossible. The integral

∏

τ

∫ ∞

−∞

dpx(τ) exp

{
∫

dτ px(τ)

[

i
dx(τ)

dτ
− v(τ)

]}

diverges.
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• Euclidean rotation t → −iτ in the Lagrangian
integral (1) is possible, the integral may converge,
but its analytic continuation into Minkowski space
does not give a unitary evolution.

CONCLUSION:
Euclidean path integrals (in constrast to

Minkowski ones) are not defined for
higher-derivative systems.
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INCLUDING INTERACTIONS

Consider the Lagrangian [A.S., 2005]

L =
1

2

[

ẍ2 − 2ω2ẋ2 + ω4x2
]

− 1

4
αx4 .

Equation of motion:

(

d2

dt2
+ ω2

)2

x − αx3 = 0 .

fixed point:

x(0) = ẋ(0) = ẍ(0) = x(3)(0) = 0 .

• Stable trajectories for small deviations (the
island of stability).

• Collapse (the system runs to the infinity at
finite time) for large enough deviations.
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ON THE SHORE OF THE STABILITY ISLAND

50 100 150 200
t

-1

-0.5

0.5

1

1.5

2
x

A similar stability island for another HD sys-
tem in

[S.N. Carrol, M. Hoffman, and M. Trodden,
PR D68 (2003) 023509]
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AN EXAMPLE OF COLLAPSE: FALLING TO
THE CENTER

Consider
V (r) = − κ

r2

with mκ > 1/8.

• Spectrum is not bounded from below.

• Schrödinger problem is not well defined.

If one smoothes the singularity,

V (r) = − κ

r2
, r > a ,

V (r) = − κ

a2
, r ≤ a ,

the spectrum is bounded, but depends on a.
• Violation of unitarity (probability “leaks”

into the singularity).

AN OBSERVATION:

• If quantum theory is sick, so is its classical
counterpart. If classical theory is benign, so is its
quantum counterpart.
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INTERACTING SYSTEMS WITH BENIGN
GHOSTS

[D. Robert + A.S., 2006]

S =

∫

dtdθ̄dθ

[

i

2
D̄Φ

d

dt
DΦ + V (Φ)

]

,

with the real (0+1)-dimensional superfield

Φ = φ + θψ̄ + ψθ̄ + Dθθ̄

• An extra time derivative.
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The Hamiltonian

H = pP − DV ′(φ) + fermion term

is not positive definite.

• 4-dimensional phase space (p, φ), (P, D).
• Two integrals of motion: H and

N =
P 2

2
+ V (φ) .

• Exactly solvable.
• Take

V =
ω2φ2

2
+

λφ4

4

• The solutions to the classical equations of
motion are expressed via elliptic functions.
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D

t

• Linear growth for D(t); φ(t) is bounded. No
collapse.

• Other benign ghost systems:
[Pavšič, 2013; Ilhan+Kovner, 2013]
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QUANTUM PROBLEM

is also exactly solvable.

ω 3ω−ω 0

localized states
infinity of

2ω−2ω3ω−

bands of
continuum spectrum

Spectrum of the Hamiltonian H = pP + DV ′(φ).
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Mixed model

L =

∫

dθ̄dθ

[

i

2
(D̄Φ)

d

dt
(DΦ) +

γ

2
D̄ΦDΦ + V (Φ)

]

.

Physics is similar to the model with γ = 0, but

• Not integrable anymore.
• No linear growth for D(t).
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.

20 40 60 80 100
t

-4

-2

2

4

D

Figure 1: The function D(t) for a deformed system
( ω = 0, λ = 1, γ = .1).
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UNUSUAL ALGEBRAIC STRUCTURES

• canonical Nöther supercharges

Q = ψ[p + iV ′(x)] −
(

χ̄ +
γ

2
ψ

)

(P − iD) ,

Q̄ =
(

ψ̄ − γ

2
χ
)

(P + iD) − χ[p − iV ′(x)] .

• and the extra pair

T = ψ[p − iV ′(x)] +
(

χ̄ +
γ

2
ψ

)

(P + iD) ,

T̄ =
(

ψ̄ +
γ

2
χ
)

(P − iD) + χ[p + iV ′(x)] .
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• When γ = 0, we have a semidirect product
of the standard N = 4 SUSY algebra

{Q, Q̄} = {T, T̄} = 2H

(but Q̄ 6= Q†, T̄ 6= T † !)

and the Abelian Lie algebra generated by

N =
P 2

2
− V (φ) ,

F = ψψ̄ − χχ̄

Nonvanishing commutators

{Q, Q̄} = {T, T̄} = 2H;

[Q̄, F ] = Q̄, [Q, F ] = −Q, [T, F ] = −T, [T̄ , F ] = T̄ ;

[Q, N ] = [T, N ] =
Q − T

2
, −[Q̄, N ] = [T̄ , N ] =

Q̄ + T̄

2
.
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• When γ 6= 0, the algebra is deformed:

• Let H = H0 − γF/2 and introduce F+ =
χ̄ψ, F− = ψ̄χ

then

[F±, F ] = ∓2F±, [F+, F−] = F ,

[Q, H0] = −γ

2
Q, [Q̄, H0] =

γ

2
Q̄,

[T, H0] =
γ

2
T, [T̄ , H0] = −γ

2
T̄ ,

[Q, F ] = −Q, [Q̄, F ] = Q̄,

[T, F ] = T, [T̄ , F ] = −T̄ ,

[Q, F−] = T̄ , [Q̄, F+] = −T,

[T, F−] = −Q̄, [T̄ , F+] = Q ,

{Q, Q̄} = 2H0 − γF, {T, T̄} = 2H0 + γF,

{Q, T} = 2γF+, {Q̄, T̄} = 2γF− .
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• This is osp(2, 2) algebra.
• a close relative of weak supersymmetry alge-

bra [A.S., PLB 585 (2004) 173].
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(1+1) FIELD THEORY

• Let Φ depend on t and x. Choose

S =

∫

dtdxdθ̄dθ [−2iDΦ∂+DΦ + V (Φ)] ,

where ∂± = (∂t ± ∂x)/2 and

D =
∂

∂θ
+ iθ∂−, D̄ =

∂

∂θ̄
− iθ̄∂+

Bosonic Lagrangian

LB = ∂µφ∂µD + DV ′(φ)

with

V (φ) =
ω2φ2

2
+

λφ4

4
, λ > 0 .

Equations of motion:

¤φ + ω2φ + λφ3 = 0

¤D + D(ω2 + 3λφ2) = 0 . (3)

• Only two integrals of motion: the energy and

N =

∫

dx

{

1

2

[

φ̇2 + (∂xφ)2
]

+
ω2φ2

2
+

λφ4

4

}

.
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• Not exactly solvable.
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• Stochasticity. Solved numerically.
• Finite spatial box. Different initial condi-

tions.

TYPICAL BEHAVIOR:

20 40 60 80
t

2

4

6

8

10

12

d

Dispersion d =
√

〈D2〉x as a function of time.
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SWEET DREAM

The TOE is a higher-derivative field theory with
benign ghosts living in a higher-dimensional flat
space-time. Our Universe represents a 3-brane —
a solitonic solution extended in three spatial and
the time directions and localized in the extra di-
mensions. Gravity arises as effective theory on the
world volume of this brane.
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