The Higgs-inflaton mixing

Oleg Lebedev

University of Helsinki

Issues:

- Higgs-inflaton mixing in general
- (likely) vacuum metastability
- (de)stabilizing effects during inflation and preheating
- stabilization via Higgs-inflaton mixing

Higgs-inflaton mixing is expected in general (unless forbidden by symmetry):

inflaton decays into SM fields directly or indirectly

Falkowski, Gross, OL '15

Grey = EW precision data , Yellow = LHC Higgs couplings , Reddish = B-physics, LEP, LHC Green (optional) = Higgs potential stability/perturbativity up to $M_{\rm pl}$

The mixing angle θ as large as 0.3 is allowed!

Vacuum metastability:

$$h >> \Lambda \sim 10^{10} \, \text{GeV}$$

$$V \sim \frac{1}{4} \lambda(h) h^4$$
 , $\lambda(h) < 0$

$$\lambda(h) < 0$$

$$\Lambda = 10^{-8} \, \mathrm{M}_{\mathrm{p}}$$

$$\Lambda = 10^{-8} \text{ M}_{Pl}$$
 , barrier = $10^{-32} \text{ M}_{Pl}^{-4}$

Problems:

- how did the Universe end up at $h \sim 0$?
- why did it stay there during inflation?

Solutions:

- modify the Higgs potential during inflation
- just modify the Higgs potential

1. Correct the Higgs potential during inflation only

Espinosa, Giudice, Riotto '07 Herranen, Markkanen, Nurmi, Rajantie '14

$$-\mathcal{L}_{hR} = \xi_h H^{\dagger} H \hat{R}$$

OL, Westphal '12

$$-\mathcal{L}_{h\phi} = \lambda_{h\phi} H^{\dagger} H \phi^2$$

Large effective mass term ~ $\lambda_{h\phi} \, \, \phi^2 \, \implies \, h(t) \sim h(0) \, exp \, (-3/2 \, Ht)$

However, the same effect may destabilize the Higgs during **preheating**:

Relatively small window of viable couplings

2. Correct the Higgs potential at all epochs

Ema, Karciauskas, OL, Zatta '17

Minimal option: **use inflaton** $\Delta L \sim \phi H^{\dagger}H$

Two mass eigenstates $\boldsymbol{h}_{_{1,2}}$ with mixing angle $\boldsymbol{\theta}$:

$$2\lambda_h v^2 = m_1^2 \cos^2 \theta + m_2^2 \sin^2 \theta$$

 λ_{h} increases for $m_{2} > m_{1}$!

- Tree level effect
- Affects boundary conditions
- · Complete stability

 $t = ln(\mu/m_{\star})$

The set-up: Higgs (h) + inflaton (\phi)

Include all dim-4 terms (no symmetry):

$$S = \int d^4x \sqrt{-\hat{g}} \left[\frac{1}{2} \Omega^2 \hat{R} - \frac{1}{2} \hat{g}^{\mu\nu} \partial_{\mu} \phi \ \partial_{\nu} \phi - \frac{1}{2} \hat{g}^{\mu\nu} \partial_{\mu} h \ \partial_{\nu} h - V(\phi, h) \right]$$

$$\Omega^2 = 1 + \xi_{\phi} \phi^2 + \xi_h h^2 \ ,$$

$$V(\phi, h) = \frac{\lambda_h}{4} h^4 - \frac{\mu_h^2}{2} h^2 + \frac{\lambda_{h\phi}}{2} h^2 \phi^2 + \frac{\sigma h^2 \phi}{4} + \frac{\lambda_{\phi}}{4} \phi^4 + \frac{b_3}{2} \phi^3 - \frac{\mu_{\phi}^2}{2} \phi^2 + b_1 \phi \ ,$$

Inflation is driven by ϕ with $\xi_{\phi} \gg 1$ (à la Bezrukov-Shaposhnikov) :

Fig. 1. Effective potential in the Einstein frame.

Fig. 12. Marginalized joint 68 % and 95 % CL regions for n_s and $r_{0.002}$ from *Planck* in combination with other data sets, compared to the theoretical predictions of selected inflationary models.

<u>High energy constraints</u>:

 $\begin{array}{ccc} \lambda_{_{\varphi}} < 10^{-5} & \Longrightarrow & \text{no unitarity issues} \\ \lambda_{_{h\varphi}} < 10^{-2} & \Longrightarrow & \text{no large rad. corrections} \end{array}$

(also assume a single scale TeV dimensionful parameters)

Preheating:

Reheating:

$$\phi + \phi \rightarrow h + h$$
 \longrightarrow $T_{reh} > 10^{12} \text{ GeV}$

 ϕ freezes-out and decays $\phi \rightarrow h + h$

Vacuum stability:

$$\sigma'v = \frac{\sin 2\theta}{4} \left(m_1^2 - m_2^2\right)$$
 the trilinear interaction is crucial for the mixing

<u>Inflaton search at LHC</u>:

- · Universal Higgs coupling reduction
- · Heavy Higgs-like resonance
- · Resonant decay $h_2 \rightarrow h_1 h_1$

Lewis, Sullivan '17

CONCLUSION

- Higgs-inflaton mixing generally expected
- naturally generated by \$\phi\$ H[†]H
- can fully stabilize the EW vacuum
- healthy inflation/reheating
- single mass scale (TeV) → second "Higgs" at the LHC