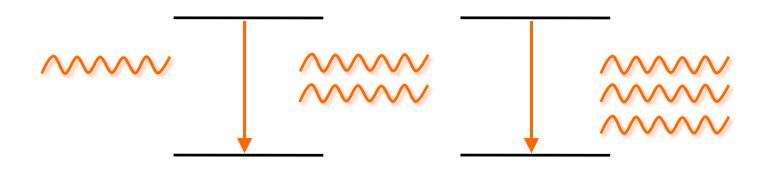
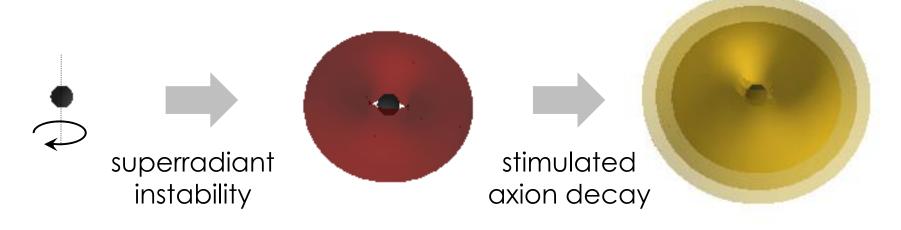


BLASTS

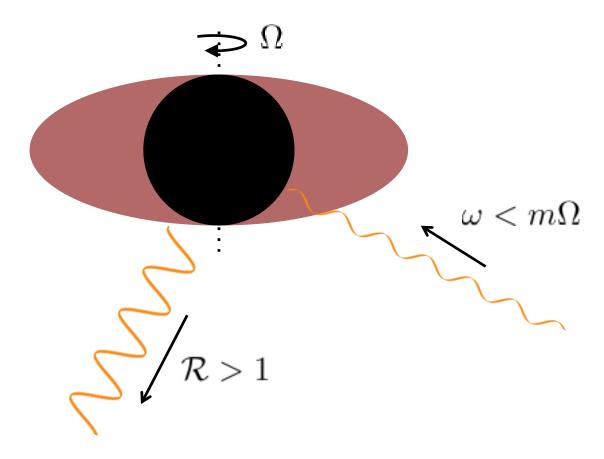

Black hole Lasers powered by Axion SuperradianT instabilities

João G. Rosa Aveiro University


with **Tom Kephart** (Vanderbilt University)
Phys. Rev. Lett. **120**, 231102 (2018) (*Editors' Suggestion*)
[arXiv:1709.06581 [gr-qc]]

PACTS 2018, Tallinn, 21 June 2018

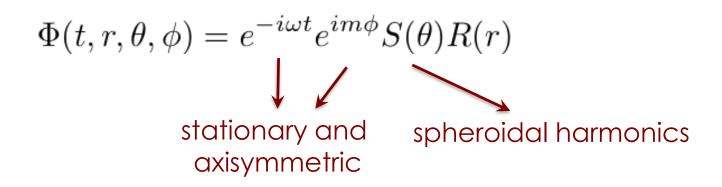
Lasers and stimulated emission


Kerr black hole having a BLAST:

Black hole superradiance

[Zeldovich (1966)]

Low frequency waves can be amplified by scattering off a Kerr black hole, extracting its energy and spin:

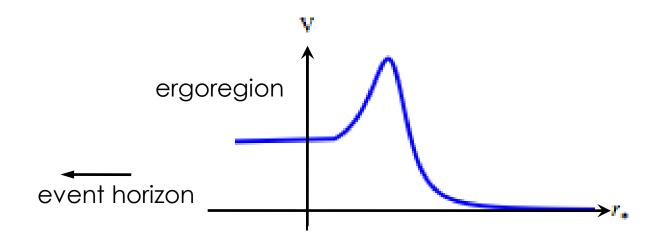


Superradiance for scalar waves

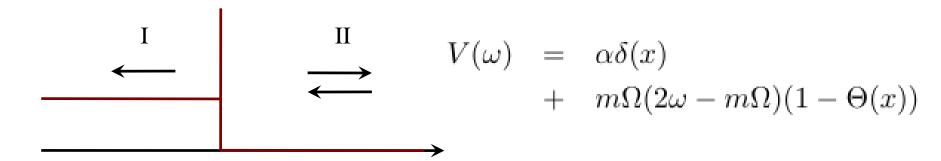
Klein-Gordon equation in Kerr space-time:

$$g^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\Phi = 0$$

Separation of variables:


Superradiance for scalar waves

Schrodinger-like radial equation:


$$\frac{d^2\psi}{dr_*^2} + \left[\omega^2 - V(\omega)\right]\psi = 0$$

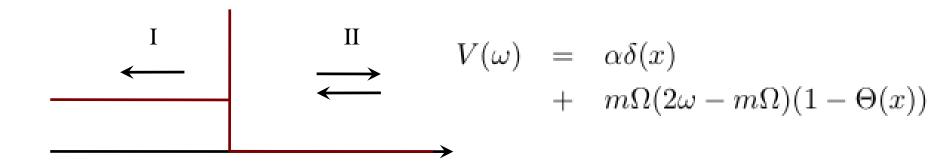
where

$$\psi = \sqrt{r^2 + a^2} R$$
, $dr_* = \frac{(r^2 + a^2)}{\Delta} dr$

Toy model for superradiance

General solutions:

$$\psi_I = e^{-i(\omega - m\Omega)x}$$
, $\psi_{II} = Ae^{-i\omega x} + Be^{i\omega x}$

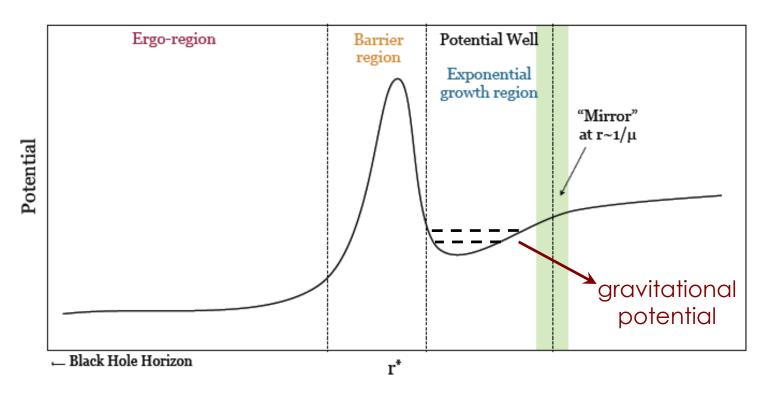

Boundary conditions:

$$\psi_I(0) = \psi_{II}(0) , \qquad \psi'_I(0) - \psi'_{II}(0) = \alpha \psi_I(0)$$

Reflection coefficient:

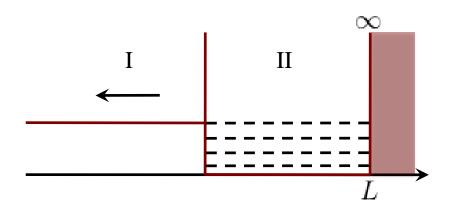
$$\mathcal{R} = \left| \frac{B}{A} \right|^2 = \frac{\alpha^2 + m^2 \Omega^2}{\alpha^2 + (2\omega - m\Omega)^2} > 1 \qquad \omega < m\Omega$$

Toy model for superradiance


In the superradiant regime:

- negative phase velocity: $k_I = \omega m\Omega < 0$
- positive group velocity: $v_g = d\omega/dk_I = 1$

Waves carry negative energy into the BH Energy and spin extraction from BH


Massive black hole bombs

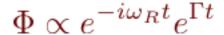
Massive fields can become bound to the black hole: "gravitational atoms"

[Arvanitaki et al. (2009)]

Toy model for superradiant instabilities

$$\psi_I = e^{-i(\omega - m\Omega)x}$$
$$\psi_{II} = A\sin(\omega x)$$

Bound states satisfy:


$$\omega \cot(\omega L) + \alpha = i(\omega - m\Omega)$$

In the limit $\alpha \gg \omega$:

$$\omega = \omega_R + i\Gamma$$

$$\omega_R \simeq \frac{n\pi}{2L}$$

$$\Gamma \simeq -\frac{\omega_R(\omega_R - m\Omega)}{\alpha}$$

Superradiant instability

Superradiant instability

Massive scalar fields form Hydrogen-like bound states in Kerr BH:

$$\hbar\omega_n \simeq \mu c^2 \left(1 - \frac{\alpha_\mu^2}{2n^2}\right) \qquad \qquad \alpha_\mu \equiv \frac{G\mu M_{BH}}{\hbar c}$$

Exponentially growing field for $\omega_n < m\Omega$ leads to scalar cloud

$$\Gamma_s \simeq \frac{\tilde{a}}{24} \alpha_\mu^9 \left(\frac{c^3}{GM}\right) \simeq 4 \times 10^{-4} \tilde{a} \left(\frac{\mu}{10^{-5} \text{ eV}}\right) \left(\frac{\alpha_\mu}{0.03}\right)^8 \text{ s}^{-1}$$

Main cloud properties:

$$r_0 = \frac{\hbar}{\mu c \alpha_\mu} \gg r_+$$

$$\sqrt{\langle v^2 \rangle} \simeq (\alpha_{\mu}/2)c$$

& Pani (2015)] n=2, l=m=1

[see review by Brito, Cardoso & Pani (2015)]

QCD axion

Pseudo-scalar particle predicted by the Peccei-Quinn solution to the strong CP problem

$$\mu \simeq 10^{-5} \left(\frac{6 \times 10^{11} \text{ GeV}}{F_{\phi}} \right) \text{ eV}$$

Decays into photon pairs:
$$\mathcal{L}_{\phi\gamma\gamma} = \frac{\alpha K}{8\pi F_{\phi}} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$$

$$\tau_{\phi} \simeq 3 \times 10^{32} K^{-2} \left(\frac{\mu}{10^{-5} \; \mathrm{eV}}\right)^{-5} \; \mathrm{Gyr}$$

Can account for cold dark matter (coherent oscillations, etc)

$$10^{-12} \text{ eV} \lesssim \mu \lesssim 10^{-2} \text{ eV}$$

Axionic lasers

Stimulated decay important in dense axion clusters

[Tkachev (1987); Kephart & Weiler (1987,1995)]

Boltzmann equation for axion decay/inverse decay:

$$\frac{dn_{\lambda}(\mathbf{k})}{dt} = \int dX_{LIPS} [f_{\phi}(\mathbf{p})(1 + f_{\lambda}(\mathbf{k}))(1 + f_{\lambda}(\mathbf{k}')) - f_{\lambda}(\mathbf{k})f_{\lambda}(\mathbf{k}')(1 + f_{\phi}(\mathbf{p}))] |\mathcal{M}|^{2}$$

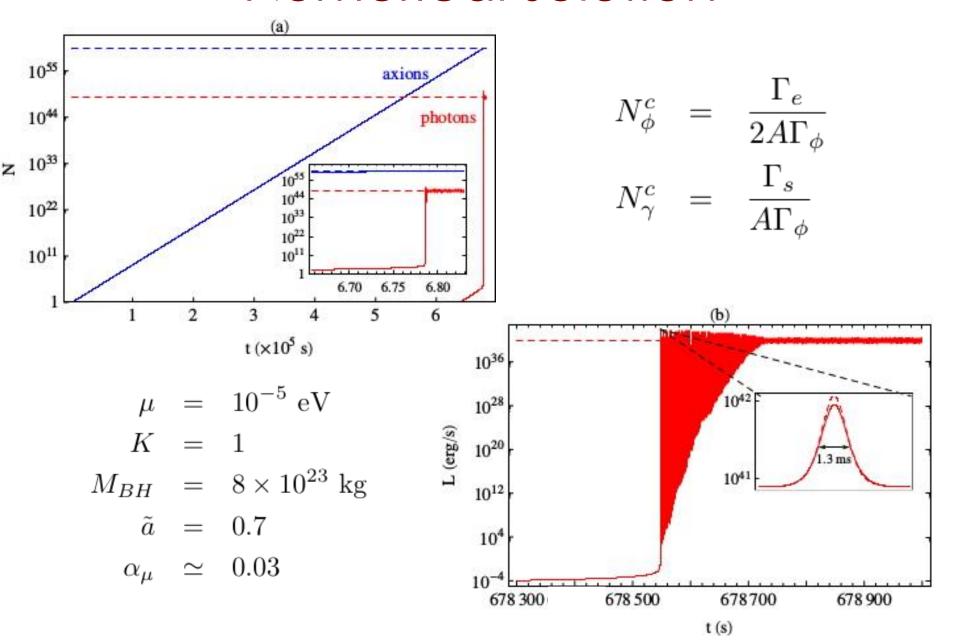
where:

$$n_i = \int \frac{d^3k_i}{(2\pi)^3} f_i(\mathbf{k_i})$$

BH-axion-photon system

Simplified model:

toroidal axion cloud (non-relativistic, flat space)


escape

homogeneous and isotropic phase space distributions

$$p_{\phi} \lesssim \frac{\alpha_{\mu}}{2} \mu c \; , \qquad p_{\gamma} \simeq \frac{\mu c}{2} \; , \qquad \Delta p_{\gamma} \simeq \frac{\alpha_{\mu}}{2} \mu c \;$$
 superradiance spontaneous decay
$$\frac{dN_{\phi}}{dt} \; = \; \Gamma_{s} N_{\phi} - \Gamma_{\phi} \left[N_{\phi} (1 + A N_{\gamma}) - B_{1} N_{\gamma}^{2} \right] \; , \\ \frac{dN_{\gamma}}{dt} \; = \; -\Gamma_{e} N_{\gamma} + 2\Gamma_{\phi} \left[N_{\phi} (1 + A N_{\gamma}) - B N_{\gamma}^{2} \right] \; , \\ \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

decay annihilation

Numerical solution

Constraints

1. Critical cloud mass/spin for lasing:

$$\frac{J_{\phi}^c}{J_{BH}} \simeq \frac{0.06}{\tilde{a}\alpha_{\mu}^3 K^2} \left(\frac{\mu}{10^{-8} \text{ eV}}\right)^{-2} \lesssim 1$$

$$\mu \gtrsim 10^{-8} \ {\rm eV}$$
 Primordial BHs (dark matter?)

PBHs born with no spin but can merge into spinning PBHs

2. Non-linear self-interactions quench instability ('bosenova')

$$\phi^c \lesssim F_\phi$$
 $\alpha_\mu \lesssim 0.03K$

BLAST phenomenology

Schwinger electron-positron pair production increases photon plasma mass and quenches BLAST:

$$|\mathbf{E}| \sim E_c \left(\frac{\mu}{10^{-5} \text{ eV}}\right) \left(\frac{\alpha_{\mu}}{0.03}\right) \left(\frac{L}{10^{43} \text{ erg/s}}\right)^{1/2}$$

We should expect single lasing bursts:

$$L_B \simeq \frac{2 \times 10^{42}}{K^2} \tilde{a} \left(\frac{10^{-5} \text{ eV}}{\mu}\right)^2 \left(\frac{\alpha_{\mu}}{0.03}\right)^7 \left(\frac{\xi}{100}\right) \text{ erg/s}$$

$$\tau_B \simeq \frac{1}{\sqrt{\tilde{a}}} \left(\frac{10^{-5} \text{ eV}}{\mu}\right) \left(\frac{\alpha_{\mu}}{0.03}\right)^{-9/2} \left(\frac{\xi}{100}\right)^{-1/2} \text{ ms}$$

$$\nu_B \simeq 1.2 \left(\frac{\mu}{10^{-5} \text{ eV}} \right) \text{ GHz}$$

Fast Radio Bursts?
[e.g. Chatterjee et al. (2017)]

BLAST phenomenology

Primordial BH merger rates (clustered scenario):

$$\Gamma_{\rm capt}^{\rm total} \simeq 3 \times 10^{-9} f_{\rm DM} \delta^{\rm loc} \ {\rm yr}^{-1} {\rm Gpc}^{-3}$$

[Garcia-Bellido & Clesse (2016)]

May have up to a few new BLASTs formed per year in the sky!

BLASTs repeat every few hours after e⁺e⁻ annihilation, yielding up to 10⁸ FRBs before superradiance shuts down

Up to 10⁴-10⁵ active BLAST FRBs per day across the sky

Other astrophysical signatures:

- e⁺e⁻ annihilation/ positronium afterglows
- GWs from bosenova collapse in between bursts

Look for 10⁻⁵ eV QCD axion dark matter in the laboratory

ADMX, X3, CULTASK, MADMAX, ORPHEUS, ...

+ DM axion-photon conversion in galactic B-field @ SKA [Kelley & Quinn (2017)]

Thank you!