19 June 2018
 PACTS Tallinn

Marco Cirelli (CNRS LPTHE Jussieu)

SORBONNE UNIVERSITÉ

CRÉATEURS DE FUTURS DEPUIS 1257

19 June 2018
 PACTS Tallinn

Marco Cirelli (CNRS LPTHE Jussieu)

SORBONNE UNIVERSITÉ

CRÉATEURS DE FUTURS DEPUIS 1257

direct detection

Xenon, CDMS, Edelweiss, LUX,... (CoGeNT, Dama/Libra...)

production at colliders

γ from annihil in galactic center or halo and from secondary emission

Fermi, ICT, radio telescopes..
from annihil in galactic halo or center
PAMBLA, Fermi, HBSS, AMS, balloons...
from annihil in galactic halo or center
from annihil in galactic halo or center
GAPS, AMS
ν, ν from annihil in massive bodies
SK, Icecube, Antares

direct detection

production at colliders

γ from annihil in galactic center or halo and from secondary emission

Fermi, ICT, radio telescopes..
from annihil in galactic halo or center
PAMELA, Fermi, HESS, AMS,balloons...
from annihil in galactic halo or center
from annihil in galactic halo or center
GAPS, AMS
$\nu, \bar{\nu}$ from annihil in massive bodies
SK, Icecube, Antares

direct detection

production at colliders

S. Ting - AMS days @ CERN apr 2015
A. Kounine - AMS days @ CERN apr 2015

AMS-O2

AMS coll.,PRL 117, 091103 (2016)

Antiproton data vis-à-vis the secondaries:

Giesen, Boudaud,
Génolini, Poulin,
Cirelli, Salati,
Serpico
1504.04276

Antiproton data vis-à-vis the secondaries:

Giesen, Boudaud,
Génolini, Poulin,
Cirelli, Salati,
Serpico
1504.04276

Antiproton data vis-à-vis the secondaries:

Giesen, Boudaud,
Génolini, Poulin,
Cirelli, Salati,
Serpico
1504.04276

Background computations for antiprotons:

Indirect Detection

Background computations for antiprotons:

Main ingredients:

- primary p (and He)
- spallation cross-sections $\sigma_{p \mathrm{H} \rightarrow \bar{p} \mathrm{X}}, \sigma_{p \mathrm{He} \rightarrow \overline{\mathrm{p}} \mathrm{X}}, \sigma_{\mathrm{HeH} \rightarrow \bar{p} \mathrm{X}}, \sigma_{\mathrm{HeHe} \rightarrow \overline{\mathrm{p}} \mathrm{X}}$
- propagation
- solar modulation

Indirect Detection

Background computations for antiprotons:

Main ingredients:

- primary p (and He)
- spallation cross-sections
- propagation
- solar modulation

Antiproton data vis-à-vis the secondaries:

NTO evident cxcess

Giesen, Boudaud,
Génolini, Poulin,
Cirelli, Salati,

Antiproton data vis-à-vis the secondaries:

NTO evident cxcess

Some

 preference for flatnessGiesen, Boudaud,
Génolini, Poulin,
Cirelli, Salati,
Serpico
1504.04276

Antiproton data vis-à-vis the secondaries:

Giesen, Boudaud,
Génolini, Poulin,
Cirelli, Salati,
Serpico
1504.04276
C. Evoli, D. Gaggero and D. Grasso, arXiv: I504.05 I 75

p, He by AMS-02 and CREAM,
B/C by AMS-02, heavier nuclei by compilation
R. Kappl,A. Reinert and M.W. Winkler, arXiv. I 506.04 I 45

Based on AMS-02 \bar{p} / p data (april 2015)

Astrophysical uncertainties on the constraints

Giesen, Boudaud,
Génolini, Poulin,
Cirelli, Salati,
Serpico

Recent developments

finds a possible excess
$\mathrm{m}_{\mathrm{DM}}=80 \mathrm{GeV}$, bb, thermal cross-section
similarly:
Cui, Yuan, Tsai, Fang 1610.03840
Huang + 1611.01983 (light mediators)
Feng, Zhang ly01.02ß63
Cuoco, Heisig, Krämer, Korsmeier 1704.08258 Boschini+ (Galprop) 1704.06337 (but only lo)

Recent developments

finds a possible excess
$\mathrm{m}_{\mathrm{DM}}=80 \mathrm{GeV}$, bb, thermal cross-section
similarly:
Cui, Yuan, Tsai, Fang 1610.03840
Huang + 1611.01983 (light mediators)
Feng, Zhang 1701.02263
Cuoco, Heisig, Krämer, Korsmeier 1704.08258
Boschini+ (Galprop) 1704.06337 (but only lo)

criticisms:

propagation parameters determined with p, He data only, w/o B/C
excess evaporates including low energies

Recent developments

finds a possible excess
$\mathrm{m}_{\mathrm{DM}}=80 \mathrm{GeV}$, bb, thermal cross-section
similarly:
Cui, Yuan, Tsai, Fang 1610.03840
Huang + 1611. 01983 (light mediators)
Feng, Zhang 1701.02263
Cuoco, Heisig, Krämer, Korsmeier 1704.08258
Boschini+ (Galprop) 1704.06337 (but only lo)

on the other hand:

B/C and p probably probe different regions
it's a very tricky region, cool things can hide there

Recent developments

finds a possible excess
$\mathrm{MDM}=80 \mathrm{GeV}, \mathrm{bb}$
thermal cross-section
similarly:

Reinert, Winkler 1712.00002

excess exists

but significance $\sim 1 \sigma$, given all uncertainties

POSiu ns (ane ectrons)

direct detection

production at colliders

from annihil in galactic center or halo and from secondary emission

Formi, ICM, radio telescopes

indirect e^{+}from annihil in galactic halo or center

> PAMPILA, Fermi, H円SS, AMS,balloons.
from annihil in galactic hall or center
from annihil in galactic halo or center

- leptophilic
- $\mathrm{m}_{\mathrm{DM}}>$ few 100 GeV
- huge annihilation cross section

DM DM $\rightarrow \mu \mu$, NFW profile

- leptophilic
$-\mathrm{m}_{\mathrm{DM}} \sim 1 \mathrm{TeV}$
- huge annihilation cross section

DM DM $\rightarrow \mu \mu$, NFW profile

- leptophilic
$-\mathrm{m}_{\mathrm{DM}} \lesssim 1 \mathrm{TeV}$
- huge annihilation cross section

DM DM $\rightarrow \mu \mu$, NFW profile

- leptophilic
$-\mathrm{m}_{\mathrm{DM}} \sim 1 \mathrm{TeV}$
- huge annihilation cross section

DM DM $\rightarrow \mu \mu$, NFW profile

- leptophilic
$-\mathrm{m}_{\mathrm{DM}} \sim 1 \mathrm{TeV}$
- huge annihilation cross section

DM DM $\rightarrow \mu \mu$, NFW profile

However:

However:

> increased precision brings increased tension
"The improved accuracy of AMS-02 [...]
now excludes channels previously allowed."
M. Boudaud et al., 1410.3799

However:

increased precision brings increased tension
"The improved accuracy of AMS-02 [...]
now excludes channels previously allowed."
M. Boudaud et al., 1410.3 r99
combination of annihilation channels are possible

However:

increased precision brings increased tension
"The improved accuracy of AMS-02 [..I now excludes channels previously allowed."
M. Boudaud et al., 1410.3799
combination of annihilation channels are possible
, constraints: gamma rays, neutrinos, CMB...

T.Slatyer 1506.03811

Planck 2015 (1502.01589)

HAWC Coll., Science 359 (2017) 911 - 1711.06223

HAWC sees ICS TeV r-rays from $\sim 100 \mathrm{TeV} \mathrm{e}^{+} \mathrm{e}^{-}$ from Geminga and Monogem $\sqrt{7}$

e^{+}are 'very trapped' around these pulsars (diffusion is very slow)

e^{+}cannot reach Earth to explain 100 GeV excesses, must be stg else (DM?)

Geminga and PSR B0656+14 are the oldest pulsars for which a tera-electron volt nebula has so far been detected. Under our assumption of isotropic and homogeneous diffusion, the dominant source of the positron flux above 10 GeV cannot be either Geminga or PSR B0656+14. Under the unlikely situation that the field is nearly aligned along the direction between Earth and the nearby tera-electron volt nebulae, the local positron flux can be increased; however, the tera-electron volt morphology of the sources natches our isotropic diffusion model. We therefore favor the explanation that instead of these two pulsars, the origin of the local positron flux must be explained by other processes, such as different assumptions about secondary production [although that has been questioned ($33 ; 34$)], other pulsars, other types of cosmic accelerators such as micro-quasars (35) and supernova remnants (34), or the annihilation or decay of dark matter particles (9).

HAWC Coll., Science 359 (2017) 911 - 1711.06223

HAWC sees ICS TeV γ-rays from $\sim 100 \mathrm{TeV} \mathrm{e}^{+}{ }^{-}$ from Geminga and Monogem $\sqrt{7}$
e^{+}are 'very trapped' around these pulsars (diffusion is very slow)

e^{+}cannot reach Earth to explain
100 GeV excesses, must be stg else
(DM?)

Criticisms:

- space-dep diffusion: local $=$ global

Geminga and PSR B0656+14 are the oldest pulsars for which a tera-electron volt nebula has so far been detected. Under our assumption of isotropic and homogeneous diffusion, the dominant source of the positron flux above 10 GeV cannot be either Geminga or PSR B0656+14. Under the unlikely situation that the field is nearly aligned along the direction between Earth and the nearby tera-electron volt nebulae, the local positron flux can be increased; however, the tera-electron volt morphology of the sources natches our isotropic diffusion model. We therefore favor the explanation that instead of these two pulsars, the origin of the local positron flux must be explained by other processes, such as different assumptions about secondary production [although that has been questioned ($33 ; 34$)], other pulsars, other types of cosmic accelerators such as micro-quasars (35) and supernova remnants (34), or the annihilation or decay of dark matter particles (9).

HAWC Coll., Science 359 (2017) 911 - 1711.06223

HAWC sees ICS TeV γ-rays from $\sim 100 \mathrm{TeV} \mathrm{e}^{+}{ }^{-}$ from Geminga and Monogem $\sqrt{7}$
e^{+}are 'very trapped' around these pulsars (diffusion is very slow)

e^{+}cannot reach Farth to explain 100 GeV excesses, must be stg else (DM?)

Criticisms:

- space-dep diffusion: local \neq global
- E-dep diffusion: 100 TeV vs 100 GeV

Geminga and PSR B0656+14 are the oldest pulsars for which a tera-electron volt nebula has so far been detected. Under our assumption of isotropic and homogeneous diffusion, the dominant source of the positron flux above 10 GeV cannot be either Geminga or PSR B0656+14. Under the unlikely situation that the field is nearly aligned along the direction between Earth and the nearby tera-electron volt nebulae, the local positron flux can be increased; however, the tera-electron volt morphology of the sources natches our isotropic diffusion model. We therefore favor the explanation that instead of these two pulsars, the origin of the local positron flux must be explained by other processes, such as different assumptions about secondary production [although that has been questioned $(33 ; 34)$], other pulsars, other types of cosmic accelerators such as micro-quasars (35) and supernova remnants (34), or the annihilation or decay of dark matter particles (9).

HAWC Coll., Science 359 (2017) 911 - 1711.06223

HAWC sees ICS TeV \vee-rays from $\sim 100 \mathrm{TeV} \mathrm{e}^{+}{ }^{-}$ from Geminga and Monogem $\sqrt{7}$
e^{+}are 'very trapped' around these pulsars (diffusion is very slow)
e^{+}cannot reach Barth to explain 100 GeV excesses, must be stg else (DM?)

Criticisms:

- space-dep diffusion: local \neq global
- E-dep diffusion: 100 TeV vs 100 GeV
- t-dep: r -rays today, but e+ 10^{4} yrs ago

Geminga and PSR B0656+14 are the oldest pulsars for which a tera-electron volt nebula has so far been detected. Under our assumption of isotropic and homogeneous diffusion, the dominant source of the positron flux above 10 GeV cannot be either Geminga or PSR B0656+14. Under the unlikely situation that the field is nearly aligned along the direction between Earth and the nearby tera-electron volt nebulae, the local positron flux can be increased; however, the tera-electron volt morphology of the sources natches our isotropic diffusion model. We therefore favor the explanation that instead of these two pulsars, the origin of the local positron flux must be explained by other processes, such as different assumptions about secondary production [although that has been questioned $(33 ; 34)$], other pulsars, other types of cosmic accelerators such as micro-quasars (35) and supernova remnants (34), or the annihilation or decay of dark matter particles (9).

Below 100 GeV , the new LAT measurement differs from the previous one by $10-30 \%$, as can be seen in Fig. 13. A large part of this difference below 30 GeV is due to the lack of correction in the previous analy-
sis for the loss of CREs above the geomagnetic energy cutoff. After applying this correction, the remaining difference is $10-15 \%$ and is due to imperfections in the simulation that was used in the previous analysis (remnants of electronic signals from out-of-time particles were not simulated [34])

M. Cirelli - compilation ICRC 2015

M. Cirelli - compilation

HESS Coll. ICRC 2017
(D. Kerszberg)
no paper nor proceeding yet

M. Cirelli - compilation

M. Cirelli - compilation
frenetic activity in December 2017
(38 papers / 29 days)

M. Cirelli - compilation
frenetic activity in December 2017 (38 papers / 29 days)

- leptonic channel (e^{+e} - or $\mu^{+} \mu$-)
- nearby (0.2 kpc) huge ($10^{8} \mathrm{Msun}$) DM clump - for large flux
- for peaked spectrum

direct detection

production at colliders

γ from annihil in galactic center or halo and from secondary emission

Fermi, ICT, radio telescopes
from annihil in galactic halo or center
PAMBLA, Fermi, HESS, AMS, balloons.. from annihil in gallactic hallo or center
\bar{d} from annihil in galactic halo or center
GAPS, AMS

from annihil in massive bodies

 SK, Icecube, Km3NetHe from annihil in galactic halo or center AMS?

Indirect Detection

He from DM annihilations in halo

Indirect Detection

He from DM annihilations in halo

Indirect Detection

He from DM annihilations in halo

He from DM annihilations in halo

all
consistent with antiproton bounds

He from DM annihilations in halo

$\overline{H e}$ from DM annihilations in halo

$\overline{H e}$ from DM annihilations in halo

He from DM annihilations in halo

In five years, AMS has collected 3.7 billion helium events (charge $\mathrm{Z}=+2$). To date we have observed a few $\mathrm{Z}=-2$ events with mass around ${ }^{3} \mathrm{He}$. An event is displayed in Figure 14.

He from DM annihilations in halo

 Figure 14.

DM DM $\rightarrow W^{+} W^{-} \quad m_{D M}=1000 \mathrm{GeV} \quad p_{\text {coal }}=195 \mathrm{MeV}$

$$
\text { we have observed a } \mathrm{Z} \mathrm{Z}=-2 \text { events with mass around }{ }^{3} \mathrm{He} \text {. An event is displayed in }
$$

$\overline{H e}$ from DM annihilations in halo

update: Blum, Ng et al (1704.05431) find very high bkg calibrating on ALICE data

He from DM annihilations in halo

update: Blum, Ng et al (1704.05431)
find very high bkg calibrating on ALICE data
update:
Coogan, Profumo (1705.09664) find 5 He from DM in 5 yrs possible in AMS, barely compatible with p, D

All ID constraints

DM not seen yet (Damul...)

DM not seen yet (Damn!...)
ID with cosmic rays is in principle a very powerful tool

DM not seen yet (Damn!...)
ID with cosmic rays is in principle a very powerful tool, but:
in $e^{ \pm}$: long standing 'excesses'
in \bar{p} : still large uncertainties
in \bar{d} : challenging flux
in $\overline{\mathrm{He}}$: hopeless? who knows
in v : challenging detection
in Y : astrophysical background

DM not seen yet (Damn!...)

ID with cosmic rays is in principle a very powerful tool, but:
in $e^{ \pm}$: long standing 'excesses'
in \bar{p} : still large uncertainties
in \bar{d} : challenging flux
in $\overline{\mathrm{He}}$: hopeless? who knows
in v : challenging detection
in Y : astrophysical background
Solution:

DM not seen yet (Damm!...)
ID with cosmic rays is in principle a very powerful tool, but:
in $e^{ \pm}$: long standing 'excesses'
in \bar{p} : still large uncertainties
in \bar{d} : challenging flux
in $\overline{H e}$: hopeless? who knows
in v : challenging detection
in Y : astrophysical background
Solution:

- multimessenger

DM not seen yet (Damm!...)
ID with cosmic rays is in principle a very powerful tool, but:
in $e^{ \pm}$: long standing 'excesses'
in \bar{p} : still large uncertainties
in \bar{d} : challenging flux
in $\overline{H e}$: hopeless? who knows
in v : challenging detection
in Y : astrophysical background
Solution:

- multimessenger
- switch-off astrophysics

Back up slides

In roduct on

DM exists

DM exists

galactic rotation curves

weak lensing (e.g. in clusters)

'precision cosmology' (CMB, LSS)

DM exists

galactic rotation curves

weak lensing (e.g. in clusters)

'precision cosmology' (CMB, LSS)

DM is a neutral, very long lived, feebly interacting particle.

DM exists

galactic rotation curves

weak lensing (e.g. in clusters)

'precision cosmology' (CMB, LSS)

DM is a neutral, very long lived, feebly interacting particle.

Some of us believe in the WIMIP miracle.

- weak-scale mass ($10 \mathrm{GeV}-1 \mathrm{TeV}$)
- weak interactions $\sigma v=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}$
- give automatically correct abundance

DM exists

galactic rotation curves

weak lensing (e.gீ. in clusters)

'precision cosmology' (CMB, LSS)

DM is a neutral, very long lived, feebly interacting particle.

DM need not be absolutely stable, just $\tau_{\mathrm{DM}} \gtrsim \tau_{\text {universe }} \simeq 4.310^{17} \mathrm{sec}$.

What sets the overall expected flux? flux $\propto n^{2} \sigma_{\text {annihilation }}$

What sets the overall expected flux?
flux $\propto n^{2} \sigma_{\text {annihilation }}$
astro\& particle cosmo

What sets the overall expected flux?
flux $\propto n^{2} \sigma_{\text {annihilation }}$ astro\& particle reference cross section: cosmo

$$
\sigma v=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}
$$

From N-body numerical simulations:

$$
\begin{aligned}
\text { NFW : } & \rho_{\mathrm{NFW}}(r) & =\rho_{s} \frac{r_{s}}{r}\left(1+\frac{r}{r_{s}}\right)^{-2} \\
\text { Einasto : } & \rho_{\mathrm{Ein}}(r) & =\rho_{s} \exp \left\{-\frac{2}{\alpha}\left[\left(\frac{r}{r_{s}}\right)^{\alpha}-1\right]\right\} \\
\text { Isothermal : } & \rho_{\mathrm{Ioo}}(r) & =\frac{\rho_{s}}{1+\left(r / r_{s}\right)^{2}} \\
\text { Burkert: } & \rho_{\mathrm{Bur}}(r) & =\frac{\rho_{s}}{\left(1+r / r_{s}\right)\left(1+\left(r / r_{s}\right)^{2}\right)} \\
\text { Moore : } & \rho_{\mathrm{Moo}}(r) & =\rho_{s}\left(\frac{r_{s}}{r}\right)^{1.16}\left(1+\frac{r}{r_{s}}\right)^{-1.84}
\end{aligned}
$$

At small $\mathrm{r}: \rho(r) \propto 1 / r^{\gamma}$

6 profiles:

 cuspy: NFW, Moore mild: Einasto smooth: isothermal, Burkert EinastoB = steepened Einasto (effect of baryons?)| DM halo | α | $r_{s}[\mathrm{kpc}]$ | $\rho_{s}\left[\mathrm{GeV} / \mathrm{cm}^{3}\right]$ |
| :--- | :---: | ---: | :---: |
| NFW | - | 24.42 | 0.184 |
| Einasto | 0.17 | 28.44 | 0.033 |
| EinastoB | 0.11 | 35.24 | 0.021 |
| Isothermal | - | 4.38 | 1.387 |
| Burkert | - | 12.67 | 0.712 |
| Moore | - | 30.28 | 0.105 |

Local clumps in the DM halo enhance the density.

Propagation for antiprotons:

$$
\begin{aligned}
\frac{\partial f}{\partial t}- & K(T) \cdot \nabla^{2} f+\frac{\partial}{\partial z}\left(\operatorname{sign}(z) f V_{\mathrm{conv}}\right)=Q-2 h \delta(z) \Gamma_{\operatorname{ann}} f \\
& \text { diffusion } \\
& K(T)=K_{0} \beta(p / \mathrm{GeV})^{\delta} \quad \text { convective wind } \\
& T \text { kinetic energy }
\end{aligned}
$$

Propagation for antiprotons:

$$
\begin{aligned}
& \frac{\partial f}{\partial t}-K(T) \cdot \nabla^{2} f+\frac{\partial}{\partial z}\left(\operatorname{sign}(z) f V_{\text {conv }}\right)=Q-2 h \delta(z) \Gamma_{\text {ann }} f \\
& \text { diffusion } \\
& \text { convective wind }
\end{aligned}
$$

Model	δ	K_{0} in $\mathrm{kpc}^{2} / \mathrm{Myr}$	L in kpc	$V_{\text {conv }}$ in km / s
min	0.85	0.0016	1	13.5
med	0.70	0.0112	4	12
\max	0.46	0.0765	15	5

Propagation for antiprotons:

$$
\begin{aligned}
& \frac{\partial f}{\partial t}-K(T) \cdot \nabla^{2} f+\frac{\partial}{\partial z}\left(\operatorname{sign}(z) f V_{\text {conv }}\right)=Q-2 h \delta(z) \Gamma_{\text {ann }} f \\
& \text { diffusion } \\
& \text { convective wind }
\end{aligned}
$$

Model	δ	K_{0} in $\mathrm{kpc}^{2} / \mathrm{Myr}$	L in kpc	$V_{\text {conv }}$ in km / s
min	0.85	0.0016	1	13.5
med	0.70	0.0112	4	12
max	0.46	0.0765	15	5

$$
\Phi_{\bar{p}}\left(T, \vec{r}_{0}\right)=B \frac{v_{\bar{p}}}{4 \pi}\left(\frac{\rho_{0}}{M_{D M}}\right)^{2} R(T) \sum_{k}^{\frac{1}{2}} \frac{\partial v)_{k}}{d N_{\vec{p}}^{k}} \frac{{ }^{k}}{d T}
$$

Propagation for antiprotons:

$$
\begin{aligned}
& \frac{\partial f}{\partial t}-K(T) \cdot \nabla^{2} f+\frac{\partial}{\partial z}\left(\operatorname{sign}(z) f V_{\text {conv }}\right)=Q-2 h \delta(z) \Gamma_{\text {ann }} f \\
& \text { diffusion }
\end{aligned}
$$

$K(T)=K_{0} \beta(p / \mathrm{GeV})^{\delta}$ T kinetic energy

direct detection

production at colliders

Indirect Detection d from DM annihilations in halo

Indirect Detection \bar{d} from DM annihilations in halo

Indirect Detection d from DM annihilations in halo

Indirect Detection \bar{d} from DM annihilations in halo

Indirect Detection
 \bar{d} from DM annihilations in halo

\bar{d} from DM annihilations in halo

GAPS detection principle

\bar{d} is slowed down, captured (exotic atom), annihilates w distinctive emissions

P. von Doetinchem et al., 2015

DM signal in the reach of GAPS and AMS-0Z

direct detection

production at colliders

γ from annihil in galactic center or halo and from secondary emission

Fermi, ICT, radio telescopes
from annihil in galactic halo or center
PAMBLA, Fermi, HESS, AMS, balloons.. from annihil in gallactic hallo or center
\bar{d} from annihil in galactic halo or center
GAPS, AMS

from annihil in massive bodies

 SK, Icecube, Km3NetHe from annihil in galactic halo or center AMS?

Indirect Detection

He from DM annihilations in halo

Indirect Detection

He from DM annihilations in halo

Indirect Detection

He from DM annihilations in halo

He from DM annihilations in halo

all
consistent with antiproton bounds

He from DM annihilations in halo

$\overline{H e}$ from DM annihilations in halo

$\overline{H e}$ from DM annihilations in halo

He from DM annihilations in halo

In five years, AMS has collected 3.7 billion helium events (charge $\mathrm{Z}=+2$). To date we have observed a few $\mathrm{Z}=-2$ events with mass around ${ }^{3} \mathrm{He}$. An event is displayed in Figure 14.

$\overline{H e}$ from DM annihilations in halo

update: Blum, Ng et al (1704.05431) find very high bkg calibrating on ALICE data

$\overline{H e}$ from DM annihilations in halo

update:

Coogan, Profumo (1705.09664) find 5 He in $5 y r s$ in AMS possible, marginally compatible with p, D

