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Classical physics

No deviation from 
DM = perfect fluid

interacts through 
gravity only



Green+05

DM damping on 
small scales
through quantum 
effects

perfect fluid

50 Gev

100 Gev

500 Gev

λFS ≡  “average distance travelled by a DM particle before it falls in a potential well”

λFS ~ 20 Mpc (30 ev / mν)
λFS ~ 100 kpc (1 kev / mν) 
λFS ~ 3.7 pc (100 Gev / mν)1/2 

HDM:
WDM:
CDM:

Free streaming length:

Spherical collapse model:

DM clumps with planet size!

Green+05



DM-ONLY   N-BODY SIMULATIONS

Aquarius simulation of Milky Way halo

Aq-A-1:  N ~ 5x109 particles

Springel + 08



▸ Cold Dark Matter (CDM) 
subhaloes follow a power-
law mass function

DM-ONLY   N-BODY SIMULATIONS



EXTRAPOLATION DOWN TO FREE-STREAMING LENGTH

10-6 Msol

N ~ 1015

▸ Lower sub halo mass 
M>10-6Msol          at z=0

(DM particle mass ~ 1Gev)   

WIMPS:



LIMITATIONS OF N-BODY METHODS

▸ Modelling ~1015 sub haloes with current 
N-body methods and at least >100 

particles per sub halo requires Nb ~1017 

▸ Alternative: semi-analytic models (e.g. Stef & 

Lavalle 2017)

2060

Nb ~ 1017
Moore’s law 



Green+05

1. Theory:  model effects of microhaloes on the dynamics of visible systems

2. Sensitivity :    are dynamics useful to test perfect fluid model?

3. Detectability:   what observations provide strongest constraints?



GRAVITATIONAL PERTURBATIONS ON VISIBLE OBJECTS

noise term induced by substructures

stochastic equations of motion

p(F) : probability to experience a combined force  within  F, F+dF

A large population of extended substructures generates a stochastic gravitational field F 
that is fully specified by the function 



FLUCTUATIONS OF THE GRAVITATIONAL FIELDDirect calculation of  



noise term induced by substructures

stochastic equations of motion

GRAVITATIONAL PERTURBATIONS ON VISIBLE OBJECTS

Holtsmark (1919) method to describe motion of charged particles in an 
homogeneous plasma 



where and

FT

noise term induced by substructures

stochastic equations of motion

GRAVITATIONAL PERTURBATIONS ON VISIBLE OBJECTS

Holtsmark (1919) method to describe motion of charged particles in an 
homogeneous plasma 



where and

FT

FT-1

noise term induced by substructures

stochastic equations of motion

GRAVITATIONAL PERTURBATIONS ON VISIBLE OBJECTS

Holtsmark (1919) method to describe motion of charged particles in an 
homogeneous plasma 



POINT-MASS PARTICLES:        HOLTSMARK (1919) DISTRIBUTION
isotropically oriented in 
Fourier space

Holtsmark distribution 
(1919)



isotropically oriented in 
Fourier space

Holtsmark distribution 
(1919)  

- Weak-force limit   
Flat
larger number of distant substructures 
cancels with declining forces

-Strong-force limit Power-law tail     
due to contribution of single nearest particle

POINT-MASS PARTICLES:        HOLTSMARK (1919) DISTRIBUTION



isotropically oriented in 
Fourier space

Holtsmark distribution 
(1919)  

**  (finite) force average

** (divergent) amplitude of fluctuations

POINT-MASS PARTICLES:        HOLTSMARK (1919) DISTRIBUTION

Fluctuations grow up to arbitrarily-large 
values as integration time-steps 
increases



EXTENDED SUBSTRUCTURES 

f = � GM

(r + c)2
r̂

Hernquist (1990) sphere

�(k) = A(k)k3/2

p(F) 
* truncated at F = f0=GM/c2

* point-mass as c/D—>0
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(non-divergent) amplitude of fluctuations

the truncation of the large-force spectrum implies a finite variance

hF 2i =
R1
0 d3Fp(F)F 2

EXTENDED SUBSTRUCTURES

p(F) 
* truncated at F = f0=GM/c2

* point-mass as c/D—>0

Hernquist (1990) sphere



CDM SUBHALO POPULATIONS
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Mass function Aquarius
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double power-law 

Stats subhalo ensembles defined by
1) mass function 
2) size function   

size function Via Lactea II

c(M) ⇠ M+0.5



CDM SUBHALO POPULATIONS
Stats subhalo ensembles defined by
1) mass function 
2) size function   
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CDM SUBHALO POPULATIONS

double power-law 

steepening size function (β)

3 + α - β = + 0.5

MACRO-STRUCTURE 
DOMINATED

3 + α - β =  0.0 3 + α - β = - 0.5

MICRO-STRUCTURE 
DOMINATED



STOCHASTIC TIDAL FIELD

}

self-gravity

}

combined tidal tensor (noise term)

fluctuating 
tidal tensor



STOCHASTIC TIDAL FIELD

combined tidal tensor (noise term)

diagonalize:

combined tidal force induced by a 
set of N-substructures

}

self-gravity

}

fluctuating 
tidal tensor



EXTENDED SUBSTRUCTURES :    TIDES

Hernquist (1990) sphere

p(Λ) 
* truncated at Λ = λ0=2GM/c3

* point-mass as c/D—>0



Hernquist (1990) sphere

p(Λ) 
* truncated at Λ = λ0=2GM/c3

* point-mass as c/D—>0

(non-divergent) amplitude of TIDAL fluctuations

…. to be compared w/FORCE fluctuations

EXTENDED SUBSTRUCTURES :    TIDES



CDM SUBHALO POPULATIONS
Stats subhalo ensembles defined by
1) mass function 
2) size function   

n !
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d2n
dMdcdMdc

Mass function Aquarius

size function Via Lactea II
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double power-law 

CDM:
Fluctuations dominated 

by smallest objects



CDM SUBHALO POPULATIONS
steepening size function (β)

3 + α - 3β = + 0.4

MACRO-STRUCTURE 
DOMINATED

3 + α - 3β =  -0.5

MICRO-STRUCTURE 
DOMINATED

3 + α - 3β = -2

MICRO-STRUCTURE 
DOMINATED



• N-body simulations that do not resolve M1 strongly underestimate tidal 
fluctuations

• WDM  -  CDM  widely different tidal fields  (~6 orders of magnitude <Λ2>)

How can we constrain p(Λ) ??



Direct calculation of  



HEATING OF WEAKLY-BOUND OBJECTS:              WIDE BINARIES

binaries with semi-major axis 
a < 1pc
sensitive to subhaloes with
M<1 Msol

semi-major axis:

(self-gravity      =      external force)

Estimates for extrapolation of Aquarius halo

 mb = 1 Msol



WIDE BINARIES  IN GAIA

Oh+17 using TGAS Oh+17



Full dynamical modelling of observations required
• stellar ages
• wide binary formation models: isolated / association
• orbits in smooth MW potential + statistical sampling p(Λ)
• add baryonic substructures (stars, GMCs)

WIDE BINARIES  IN GAIA DR1

Oh+17 using TGAS Oh+17

comoving pairs of stars in TGAS  (2e6 stars) 

wide binaries



SUMMARY
▸ WIMP-CDM deviations from perfect fluid M> MFS ~ 10-6 Msol 

▸ N-body simulations of structure formation M>104 - 106 Msol 

(10 - 12 orders of magnitude above free streaming length! ) 

▸ Combined subhalo forces dominated by largest satellites 
(orbits/tidal streams not sensitive to small substructures) 

▸ Stochastic fluctuations of tidal field are dominated by smallest 
sub haloes (M~ MFS) 

▸ Opens up the possibility to test CDM mass function by 
measuring tidal fluctuations 

▸ Gaia will be provide key observations of weakly-bound 
systems in the Milky Way (e.g. wide binaries)



QUESTIONS

▸ Mass & size function down M~10-6Msol at z=0? N-body methods? 

▸ Time-evolution      d^2 n(r,t) / dMdc ? 

▸ Disruption of micro haloes by tidal field of MW disc ? 

▸ Baryonic substructures (GMCs, stars, etc)     Hydro + SF + feedback?









Detection extremely challenging owing to the low-mass and lack of luminous matter

* sensitive only to ‘massive’ substructures 
with M>106 Msol   (Ibata et al. 2002; Johnston et al. 2002; 
Yoon et al. 2011; Carlberg 2014; Erkal & Belokurov 2015; Ngan et 
al. 2016, Erkal et al. 2016; Bovy et al. 2017)

* can be perturbed by GMCs with M<107Msol 
(Amorisco+17)

1) TIDAL STREAM HEATING

2) LENSING

* perturb. in Einstein rings around lensed 
galaxies are also expected to be dominated by 
relatively massive subhaloes with M>107 Msol   
(Li et al. 2016)

* number of lensed galaxies relatively small. 
Very high-resolution data needed  (Koopmans 2005; 
Vegetti & Koopmans 2009; Li et al. 2013; Vegetti et al. 2014)

Vegetti+12

Amorisco+17

DETECTION OF DARK SUB HALOES



DETECTION
Detection extremely challenging owing to the low-mass and lack of luminous matter

* Degenerate with DM-particle model  
(e.g.Diemand et al. 2005; Koushiappas 2009; 
Ackermann et al. 2014; Bringmann et al. 2014; 
Zechlin+17)

* baryonic sources (e.g. BHs, neutron 
stars…)

3) GAMMA-RAYS ANNIHILATION  

Ackermann+13



HOLTSMARK (1919) DISTRIBUTION
isotropically oriented in 
Fourier space

Holtsmark distribution 
(1919)  

- Weak-force limit   
Flat.
larger number of distant substructures 
cancels with declining forces

-Strong-force limit

probability to find closest particle between r, r+dr

Power-law tail     
due to contribution of single nearest 
particle



HOLTSMARK (1919) DISTRIBUTION
isotropically oriented in 
Fourier space

Holtsmark distribution 
(1919)  

- Weak-force limit   
Flat.
larger number of distant substructures 
cancels with declining forces

-Strong-force limit

probability to find closest particle between r, r+dr

Power-law tail     
due to contribution of single nearest 
particle~r2 ~exp(-4π r3/3)

D=(2π n)-1/3



HOLTSMARK (1919) DISTRIBUTION
isotropically oriented in 
Fourier space

Holtsmark distribution 
(1919)  

- Weak-force limit   
Flat.
larger number of distant substructures 
cancels with declining forces

-Strong-force limit

probability to find closest particle between r, r+dr

Power-law tail     
due to contribution of single nearest 
particle



EXTENDED SUBSTRUCTURES
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Hernquist (1990) sphere
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SUBHALOES IN THE MILKY WAY

Aquarius simulations  (Springel+08)

Via Lactea simulations  (Diemand+07)

(bold) extrapolation of size 
function down  to 

(remains unexplored !!)



A STATISTICAL METHOD       (HOLTSMARK 1919)
N>>1 substructures distributed 
homogeneously over a 
volume V



Fourier transform

A STATISTICAL METHOD       (HOLTSMARK 1919)



Fourier transform

A STATISTICAL METHOD       (HOLTSMARK 1919)



Fourier transform

spatially uncorrelated = random locations

A STATISTICAL METHOD       (HOLTSMARK 1919)



Fourier transform

spatially uncorrelated

re-write:

= random locations

A STATISTICAL METHOD       (HOLTSMARK 1919)



Fourier transform

spatially uncorrelated

re-write:

N-power: for N>>1

= random locations

A STATISTICAL METHOD       (HOLTSMARK 1919)



Fourier transform

spatially uncorrelated

re-write:

N-power: for N>>1

Number density = N / V 

= random locations

A STATISTICAL METHOD       (HOLTSMARK 1919)



Fourier transform

spatially uncorrelated

re-write:

N-power: for N>>1

define:

= random locations

A STATISTICAL METHOD       (HOLTSMARK 1919)



Fourier transform

spatially uncorrelated

re-write:

N-power: for N>>1

define:

= random locations

A STATISTICAL METHOD       (HOLTSMARK 1919)



Fourier transform

spatially uncorrelated

re-write:

N-power: for N>>1

define:

Inverse Fourier transform

= random locations

A STATISTICAL METHOD       (HOLTSMARK 1919)



isotropically oriented in 
Fourier space

Holtsmark distribution 
(1919)  

- Weak-force limit   
Flat.
larger number of distant substructures 
cancels with declining forces

-Strong-force limit Power-law tail     
due to contribution of single nearest 
particle

POINT-MASS PARTICLES:        HOLTSMARK (1919) DISTRIBUTION


