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Cosmic ray antimatter is an interesting place to

look for new physics.
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We could have, but we don'’t see (clear) g
hints for ~10 GeV thermal relic WIMPs =
in cosmic rays; L
This does not mean we should <
stop looking. W

(We don’t see ~100 GeV SUSY
at the LHC, but we shouldn’t stop looking.)
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Antiprotons



Antiprotons

Antiprotons are produced by CR proton collisions with interstellar matter (ISM).
The amount of antiprotons produced is proportional to the amount of ISM target.

How much ISM target is there?

Boron (B) is produced by fragmentation of CR C,N,0O,... on ISM.
The amount of B produced is proportional to the amount of ISM target.

Simplest possibility:
Protons and C,N,O,... traverse roughly the same amount of ISM target.

Prediction:  |nz(R) =~
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Antiprotons ny(R) ~ On(R) Qs(R)
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Antiproton constraints on dark matter annihilation?

No robust way to compute DM annihilation constraints from antiproton data.

Source terms distributed very differently:
DM halo and CR halo thought to extend to
multi-kpc scales,

secondary CR sources confined to ~ 100 pc.

Uncertain enhancement factor, ~ 1-100,
to “DM signal”.

Many authors set constraints,
parametrising this uncertain
enhancement... somehow
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Antiproton constraints on dark matter annihilation?

Reasonably conservative:

n2(r) a0 dN;
. o . . _ X p
DM injection rate density dpDM =~ o

should not exceed secondary injection rate density Gpsec = P1SMCQp
in a typical region in the MW gas disc
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Antiproton constraints on dark matter annihilation?

Reasonably conservative:
n2(r) o0 dNj
e . . . % D
DM injection rate density gpoM =~ o
should not exceed secondary injection rate density Gpsec = P1SMCQp

in a typical

region in the MW gas disc
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Positrons
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Positrons

e+ are produced by CR proton collisions with interstellar matter (ISM).
We can calibrate the amount of ISM target from B/C data.

e+ loose energy during propagation.
So, some of the secondary flux should be lost.

The e+ flux should be lower than the flux we would get, if losses were not important.

ng (R)
Qe(R)

A simple upper bound prediction: Ne+ (R) <

Qe+ (R)
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Why would dark matter or pulsars inject this e+ flux? 1709.06507
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Pulsar model: D. Malyshev, I. Cholis, and J. Gelfand, Phys. Rev. D80, 063005 (2009)



So what is the issue with e+?
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So what is the issue with e+?

1. Can it be that the flux of TeV e+ is not suppressed by energy losses?
2. Can it be that the flux of 100GeV e+ is not suppressed, while that of 10GeV is?
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So what is the issue with e+?

1.Can it be that the flux of TeV e+ is not suppressed by energy losses?

Energy losses suppress the flux, if the cooling time is shorter than the
propagation time.

@TeV cooling time ~ 0.3 Myr ==> TV propagation time ~ 0.3 Myr?

Porter & Strong, astro-ph/0507119
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So what is the issue with e+?

2. Can it be that the flux of 100GeV e+ is not suppressed, while that of 10GeV is?

Cooling time ~ 1/E ==> propagation time ~ 1/R?
...cannot continue much beyond TV; bi-modal CR age contributions?
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So what is the issue with e+?

1. Can it be that the flux of TeV e+ is not suppressed by energy losses?
2. Can it be that the flux of >100GeV e+ is not suppressed, while that of <100GeV is?

| don’t know of any contradiction of 1,2 with theory or observations.

Some ideas in the literature, e.g., recent CR injection by SNR

e.g. Ahlers, Mertch, Sarkar (0909.4060), Mertch & Sarkar (1402.0855),
Kachelrie, Neronov, Semikoz (1504.06472), Thomas et al (1605.04926)

1708.04316, 408MHz (CGPS)
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Perhaps e+ is evidence of new physics, CR unknowns make it difficult to assess.
How do we test this further?



Perhaps e+ is evidence of new physics, CR unknowns make it difficult to assess.
How do we test this further?
Sharp spectral features?

Physics Result 2: The origin of the AMSpositron spectrum
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Perhaps e+ is evidence of new physics, CR unknowns make it difficult to assess.

How do we test this further?
Sharp spectral features?

With current data, sharp spectral features in e+ are unlikely:

The total e flux is very smooth.
KB, Annika Reinert, 1807.xxxxx
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If no sharp feature, then what?

HESS/DAMPE/CALET total e flux at E~3 TeV consistent w/ secondary flux.
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Perhaps e+ is evidence of new physics, CR unknowns make it difficult to assess.
How do we test this further?

Very precise e- and e+ measurements: KN steps?
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Perhaps e+ is evidence of new physics, CR unknowns make it difficult to assess.

How do we test this further?
Radioactive nuclei

PHYSICAL REVIEW LETTERS

Highlights Recent  Accepted Collections  Authors Referees  Search Press  About

Observation of New Properties of Secondary Cosmic Rays Lithium,
Beryllium, and Boron by the Alpha Magnetic Spectrometer on the
International Space Station

M. Aguilar et al. (AMS Collaboration)
Phys. Rev. Lett. 120, 021101 — Published 11 January 2018

— e —
Ph)’SICS See Synopsis: Space Measurements of Secondary Cosmic Rays
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Anti-He and anti-d



Anti-He and anti-d

The calculation of CR anti-nuclei is similar to that for antiprotons.

The uncertainty (at relativistic energies, R>few GV) is not from CR propagation,
but from production cross sections.
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Anti-He3

AMS02, 2018, CERN colloquium: 6 anti-He3 events in ~7 years exposure
(anti-He3/He4 ~ 1/10"8)
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Anti-He3

AMS02, 2018, CERN colloquium: 6 anti-He3 events in ~7 years exposure
(anti-He3/He4 ~ 1/10"8)

AMS02, the same CERN colloquium: 2 anti-He4 events...
(anti-He4/anti-He3 ~ 1/3)
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Summary

DM annihilation could have showed up naturally for O(10GeV) WIMPs...
A lot of information, and more is coming.

Antiprotons and e+ look secondary.

If e+ are secondary, it entails serious revision to CR propagation stories.

Several ways to test in the next few years (precision TeV e data, radionuclei).

If AMSO02 anti-He is not an experimental issue, it may be new physics
(of extreme and surprising nature... how to make anti-He4/anti-He3 ~ 1/3 ?)
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Perhaps e+ is evidence of new physics, CR unknowns make it difficult to assess.
How do we test this further?

Sharp spectral features?

1

3 <100 _
o R e'+e” data

e vl I 2x AMS-02 o' data
‘?E al."' b | =—— AMS-02 dark matter model

. E : -
% = primary e

; [i4

o !

e
3
AMS-02
. Kl .
102 10°
RIGV] RIGV]

'00,‘

mq;...n;n;iu}}i

o -R*[m?sr's GV

Fermi-LAT




Secondary upper bound
(Based on B/C)

not (R) < ns(R)

~ QB (R) Qe+ (R)

-2 . . . . L] . . . . L]
10
10" 102 10°
R [GV]

e+ upper bound predicted in Katz et al (0907.1686),
Evaluated with latest cross section and CR nuclei data (1709.06507, 1709.04953)
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Secondary upper bound
(Based on B/C)

not (R) < ns(R)

~ QB (R) Qe+ (R)

PAMELA 2008
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e+ upper bound predicted in Katz et al (0907.1686),
Evaluated with latest cross section and CR nuclei data (1709.06507, 1709.04953)
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Secondary upper bound ng(R)
(Based on B/C) net(R) S On(R) Qe+ (R)
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e+ upper bound predicted in Katz et al (0907.1686),
Evaluated with latest cross section and CR nuclei data (1709.06507, 1709.04953)
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Secondary upper bound ng(R)
(Based on B/C) net(R) S On(R) Qe+ (R)
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e+ upper bound predicted in Katz et al (0907.1686),
Evaluated with latest cross section and CR nuclei data (1709.06507, 1709.04953)
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Secondary upper bound

nB(R)
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e+ upper bound predicted in Katz et al (0907.1686),
Evaluated with latest cross section and CR nuclei data (1709.06507, 1709.04953)
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‘- Blum et al, Phys.Rev.D96 (2017), 103021‘
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Perhaps e+ is evidence of new physics, CR unknowns make it difficult to assess.
How do we test this further?
Radioactive nuclei
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Perhaps e+ is evidence of new physics, CR unknowns make it difficult to assess.
How do we test this further?
Radioactive nuclei

At rigidity R~20GV,
CR age is of order 10 Myr.
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Perhaps e+ is evidence of new physics, CR unknowns make it difficult to assess.

How do we test this further?
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Perhaps e+ is evidence of new physics, CR unknowns make it difficult to assess.
How do we test this further?
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The data supports the simple possibility, that CR nuclei (C,N,0O,...) have similar
propagation histories as CR p, He, and that fragmentation occurs w/ CR spectra
similar to those observed locally.

But this simple possibility is not guaranteed from theory, and could be violated to
some extent.

-3 _
1021 10 :
I o(pp-->pbar), 20%

®, (0.2-0.8) GV

[GeVZ/(mzssr)]

E [GeV] R [GV]

44



The data supports the simple possibility, that CR nuclei (C,N,0O,...) have similar
propagation histories as CR p, He, and that fragmentation occurs w/ CR spectra

similar to those observed locally.
But this simple possibility is not guaranteed from theory, and could be violated to

some extent.
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A more robust derivation: Ret _ ¢, (R) Qe+ (R)
np Qp(R)
Skip B/C, relate e+ directly to pbar
fer(R) <1
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A more robust derivation: Ret _ (R Qe+ (R)
np fer( )Qp(R)
Skip B/C, relate e+ directly to pbar
fe+ (R) <
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A more robust derivation: 7;: = f.4+(R) %;(%)
Skip B/C, relate e+ directly to pbar fe+ (R) z
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A more robust derivation: Ret £ (R Qe+ (R)
np +(R) Qp(R)
Skip B/C, relate e+ directly to pbar
fe+ (R) <

¢ no brem
¢ brem included

e+
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E3J [GeV2/(m?ssr)]

Rescale DAMPE to match AMS02 (sorry China)
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flux x R%7 (m'2-sr"1-s'1-GV1'7)
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Old (t~10Myr)

- Primary electrons
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old (t~10Myr) Young (t<~1Myr)
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old (t~10Myr) Young (t<~1Myr)
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