Spacetime curvature and vacuum stability during and after inflation Arttu Rajantie

PACTS 2018, Tallinn, Estonia 21 June 2018 In collaboration with: Daniel Figueroa, Matti Herranen, Tommi Markkanen, Sami Nurmi, Stephen Stopyra, Francisco Torrenti

Based on:

- Herranen, Markkanen, Nurmi & AR, PRL113 (2014) 211102
- Herranen, Markkanen, Nurmi & AR, PRL115 (2015) 241301
- AR & Stopyra, PRD95 (2017) 025008
- AR & Stopyra, PRD97 (2018) 025012
- Figueroa, AR & Torrenti, arXiv:1709.00398
- Markkanen, Nurmi, AR & Stopyra, JHEP 1806 (2018) 040

The Standard Model

- Six leptons, six quarks, three gauge fields
 + Higgs scalar φ
- All renormalisable terms allowed by symmetries in Minkowski space
- 19 parameters all have been measured
- Can be extrapolated all the way to the Planck scale

(Buttazzo et al 2013)

Vacuum Instability

Higgs effective potential

 $V(\phi)\approx\lambda(\phi)\phi^4$

- Becomes negative at $\phi > \phi_c \approx 10^{10} {\rm GeV}$
- True vacuum at Planck scale?
- Current vacuum metastable against quantum tunneling

Tunneling Rate

- Bubble nucleation rate:
 Γ ~ e^{-B}, where
 B = action of the
 "bounce" solution (Coleman 1977)
- Solve Euclidean eqs of motion
- Constant $\lambda < 0$:

$$\phi(r) = \sqrt{\frac{2}{|\lambda|}} \frac{2R}{r^2 + R^2}$$
Action $B = \frac{8\pi^2}{3|\lambda|}$

Instability Bounds

(Buttazzo et al. 2013)

- Vacuum lifetime ~ $\exp(B) \sim \exp\left(\frac{8\pi^2}{3|\lambda|}\right)$
- Longer than the age of the Universe

Higgs-Curvature Coupling

Curved spacetime:

 $\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \xi R \phi^{\dagger} \phi$ (Chernikov&Tagirov 1968)

- Symmetries allow one more renormalisable term: Higgs-curvature coupling ξ
- Last unknown parameter in the Standard Model

10²¹

Running ξ

$$\mu \frac{d\xi}{d\mu} = \left(\xi - \frac{1}{6}\right) \frac{12\lambda + 6y_t^2 - \frac{3}{2}g'^2 - \frac{9}{2}g^2}{16\pi^2}$$

Cannot be set to zero 0.25 **Becomes negative** 0.20 if $\xi_{\rm EW} = 0$ 0.15 $\xi(\mu)$ 0.10 Conformal value $\xi = 1/6$ 0.05 RG invariant at 1 loop 0.00 but not beyond -0.0510⁵ 10¹⁷ 10⁹ 10¹³ 10

RGE scale μ [GeV]

Measuring ξ

Curved spacetime:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \xi R \phi^{\dagger} \phi$$

- Ricci scalar *R* very small today \Rightarrow Difficult to measure ξ
- Colliders: Suppresses Higgs couplings (Atkins&Calmet 2012)
 - LHC Bound $|\xi| \lesssim 2.6 \times 10^{15}$
 - \circ Future (?) ILC: $|\xi| \lesssim 4 \times 10^{14}$
- ▶ In contrast, *R* was high in the early Universe

Past Light Cone

Early Universe

- Assume:
 - Light, subdominant Higgs
 - Inflaton decoupled from the Higgs
- Effective Higgs mass term $m_{eff}^2(t) = m_{H}^2 + \xi R(t)$
- Ricci scalar in FRW spacetime:

$$R = 6\left(\frac{\dot{a}^2}{a^2} + \frac{\ddot{a}}{a}\right) = 3(1 - 3w)H^2$$

- Radiation dominated
- Matter dominated
- Inflation / de Sitter

J	= 1/3	R =	0
	^	D	\mathbf{n}

w = -1

= 0

 $R = 3H^2$ $R = 12H^2$

London Higgs Fluctuations from Inflation

- Inflation: $H \leq 9 \times 10^{13}$ GeV (Planck+BICEP2 2015)
- Equilibrium field distribution (Starobinsky&Yokoyama 1994)

$$P(\phi) \propto \exp\left[-\frac{8\pi^2}{3H^4}V(\phi)\right]$$

- Tree-level potential $V(\phi) = \lambda(\phi^2 - v^2)^2$
- Nearly scale-invariant fluctuations with amplitude $\phi \sim \lambda^{-1/4} H$

Imperial College

Higgs Fluctuations from Inflation

- Equilibrium $P(\phi) \propto \exp\left[-\frac{8\pi^2}{3H^4}V(\phi)\right]$
- Running λ : Fluctuations take the Higgs over the barrier if $H \gtrsim \phi_c \approx 10^{10} \, {\rm GeV}$ (Espinosa et al. 2008; Lebedev&Westphal 2013; Kobakhidze&Spencer-Smith 2013; Fairbairn&Hogan 2014; Hook et al. 2014)
- Does this imply $H \lesssim 10^{10} \text{GeV}$?

Imperial College

Higgs During Inflation

- Inflation: Constant $R = 12H^{2}$
- Effective mass term

$$m_{\rm eff}^2 = m_{\rm H}^2 + \xi R = m_{\rm H}^2 + 12\xi H^2$$

- Tree level: (Espinosa et al 2008)
 - $\xi > 0$: Increases barrier height Makes the low-energy vacuum more stable
 - $\xi < 0$: Decreases barrier height Makes the low energy vacuum less stable
- *H* contributes to loop corrections: For $H \gg \phi$, $V(\phi) \approx \lambda(H)\phi^4 \Rightarrow$ No barrier! (HMNR 2014)

Potential in Curved Spacetime

One-loop computation in de Sitter:

$$V_{\rm SM}^{\rm eff}(\varphi(\mu)) = -\frac{1}{2}m^2(\mu)\varphi^2(\mu) + \frac{\xi(\mu)}{2}R\varphi^2(\mu) + \frac{\lambda(\mu)}{4}\varphi^4(\mu) + V_{\Lambda}(\mu) - 12\kappa(\mu)H^2 + \alpha(\mu)H^4 + \frac{1}{64\pi^2}\sum_{i=1}^{31} \left\{ n_i \mathcal{M}_i^4(\mu) \left[\log\left(\frac{|\mathcal{M}_i^2|}{\mu^2}\right) - d_i \right] + n'_i H^4 \log\left(\frac{|\mathcal{M}_i^2(\mu)|}{\mu^2}\right) \right\}.$$
 (5.3)

Ψ	i	n_i	d_i	n'_i	\mathcal{M}_i^2	Ψ	i	n_i	d_i	n'_i	\mathcal{M}_i^2	
	1	2	3/2	-34/15	$m_W^2 + H^2$		21	1	3/2	-17/15	H^2	
W^{\pm}	2	6	5/6	-34/5	$m_W^2 + H^2$	γ	22	3	5/6	-17/5	H^2	
	3	-2	3/2	4/15	$m_W^2 - 2H^2$		23	-1	3/2	2/15	$-2H^{2}$	
	4	1	3/2	-17/15	$m_Z^2 + H^2$		24	8	3/2	-136/15	H^2	
Z^0	5	3	5/6	-17/5	$m_Z^2 + H^2$	g	25	24	5/6	-136/5	H^2	
	6	$^{-1}$	3/2	2/15	$m_Z^2 - 2H^2$		26	-8	3/2	16/15	$-2H^{2}$	
q	7 - 12	-12	3/2	38/5	$m_{q}^{2} + H^{2}$	ν	27 - 29	-2	3/2	19/15	H^2	
l	13 - 15	-4	3/2	38/15	$m_l^2 + H^2$	c_{γ}	30	-1	3/2	2/15	$-2H^{2}$	
h	16	1	3/2	-2/15	$m_h^2 + 12(\xi - 1/6)H^2$	c_g	31	-8	3/2	16/15	$-2H^{2}$	
χ_W	17	2	3/2	-4/15	$m_{\chi}^2 + \zeta_W m_W^2 + 12(\xi - 1/6)H^2$	((MNRS 2018)					
χ_Z	18	1	3/2	-2/15	$m_{\chi}^2 + \zeta_Z m_Z^2 + 12(\xi - 1/6)H^2$	(
c_W	19	-2	3/2	4/15	$\zeta_W m_W^2 - 2H^2$							
c_Z	20	-1	3/2	2/15	$\zeta_Z m_Z^2 - 2H^2$							

Imperial College London

Potential in Curved Spacetime

• One-loop computation for $\xi = 0$ (in units of $\mu_{inst} \approx 6.6 \times 10^9$ GeV)

(De)Stabilising the Potential

(MNRS 2018)

• If $H \gtrsim \mu_{inst} = 6.6 \times 10^9 \text{GeV}$ and there is no new physics, vacuum stability during inflation requires $\xi \gtrsim 0.1$

Quantum Tunneling

Toy model potential

Standard Model potential

 Multiple coexisting solutions (AR&Stopyra, PRD 2018)
 Tunnelling rate Γ ~ e^{-B} nearly constant until Hawking-Moss starts to dominate

Multiple Solutions

⁽AR&Stopyra, PRD 2018)

End of Inflation

• Reheating: Inflation ($R = 12H^2$) \rightarrow radiation (R = 0)

$$R(t) = \frac{2m_{\phi}^2\phi^2 - \dot{\phi}^2}{M_{\rm Pl}^2}$$

- Effective Higgs mass $m_{eff}^2 = m_{H}^2 + \xi R$ oscillates:
 - "Geometric preheating" (Bassett&Liberati 1998, Tsujikawa et al. 1999)
- R goes negative when $\phi \sim 0$
 - If $\xi > 0$, Higgs becomes tachyonic (HMNR 2015)
 - Exponential amplification

$$\langle \phi^2 \rangle_H \sim \frac{2}{3\sqrt{3}\xi} \left(\frac{H}{2\pi}\right)^2 e^{\frac{2\sqrt{\xi}\chi_{\rm ini}}{M_{\rm Pl}}} \sim \frac{H^2}{\xi} e^{2\sqrt{\xi}\xi}$$

Imperial College London Vacuum Decay at the End of Inflation

Detailed Calculations

Time:0 ∕ar: Higgs

Max: 1.029e-05

0.002000

0.001500

0.001000 0.0005000

- Ema et al, arXiv:1602:00483
 - Lattice simulation
 - $\xi \lesssim 10$
- Kohri et al, arXiv:1602.02100
 - Linearised calculation
 - $\xi \lesssim 40$
- Figueroa, AR & Torrenti, arXiv:1709.00398
 - Lattice simulations

Lattice Simulations

•
$$V(\chi) = \frac{1}{2}m^2\chi^2$$
, $M_{\rm top} = 172.12$ GeV

Instability Time

Figueroa, AR & Torrenti, arXiv:1709.00398

- Stability depends on top mass and speed of reheating
- $M_{top} = 173.34$ GeV: vacuum decay before mt = 100 if $\xi \gtrsim 9$

Constraints on ξ

• Minimal scenario: Standard Model + $m^2 \chi^2$ chaotic inflation, no direct coupling to inflaton

$0.06 \lesssim \xi \lesssim 9$

- ▶ 15 orders of magnitude stronger than the LHC bound $|\xi| \lesssim 2.6 \times 10^{15}$
- Caveats:
 - Assumes no direct coupling to inflaton (see Lebedev's talk) – Would still need $|\xi| \leq O(1)$
 - Assumes no new physics
 - Could stabilise potential altogether
 - Assumes high scale inflation
 - Need $H \gtrsim 10^9 \text{ GeV}$