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The Standard Model

Six leptons, six quarks,
three gauge fields

+ Higgs scalar ¢ % g6l
All renormalisable terms 8
allowed by symmetries  ZS
in Minkowski space - S ey

0.0 =Yp—
19 parameters —

108 ]0]() 1012 ]0|4 lolﬁ 10]8 lolﬂ
all have been measured RGE scale 1 in GeV

Can be extrapolated all the (Buttazzo et al 2013)

way to the Planck scale
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Vacuum Instability

Higgs effective potential

V(gp) = A(P)p*
Becomes negative __
at ¢ > ¢C ~ 1010GeV o treelevel
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Tunneling Rate

» Bubble nucleation rate:
[~ e B where
B = action of the
“bounce” solution (coleman 1977)

» Solve Euclidean egs of motion
» Constant A1 < 0:

2 2R
(]5(7‘) - \/;r2+R2

812

» Action B = 3
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Instability Bounds
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(Buttazzo et al. 2013)

2
» Vacuum lifetime ~ exp(B) ~ exp (8n )

» Longer than the age of the Universe
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Higgs-Curvature Coupling

» Curved spacetime: o
L= Loy +ERPT

(Chernikov&Tagirov 1968)

» Symmetries allow one more

renormalisable term:

Higgs-curvature coupling &

» Last unknown parameter
in the Standard Model
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Running ¢
dé 1 12/1+6y5—%g’2—%gz
Hau = ( - 8) 167>

» Cannot be set to zero 025 = - . —
» Becomes negative 020 — i

ifégw =0 0.15¢
» Conformal value §(w) 0.10;- ; j

£=1/6 005f

RG invariant at 1 loop 0.002- ~__ I

but not beyond -0.055= 1 10" 107 108

RGE scale u [GeV]
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Measuring &

» Curved spacetime:
L=Lsy+ERPT
» Ricci scalar R very small today
= Difficult to measure &

» Colliders: Suppresses Higgs couplings (atkins&Calmet 2012)
> LHC Bound || < 2.6 x 10%°
> Future (?) ILC: [&] S 4 x 104

» In contrast, R was high in the early Universe
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Past Light Cone

A

today -

conformal time

hot Big Bang

comoving distance
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Early Universe
» Assume:
° Light, subdominant Higgs
° Inflaton decoupled from the Higgs
» Effective Higgs mass term mZq(t) = m§ + ER(t)
» Ricci scalar in FRW spacetime:
a‘ a
R = 6(—2+—> = 3(1 — 3w)H?
a a
> Radiation dominated w=1/3 R=0
> Matter dominated w=0 R = 3H?

> Inflation / de Sitter w=—1 R = 12H?
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Higgs Fluctuations from Inflation

Inflation: H < 9 X 1013 GeV (Planck+BICEP2 2015)
Equilibrium field distribution (Starobinsky&Yokoyama 1994)

P($) exp[ : H4v<¢>]

Tree-level potential
V(¢) — /1(¢2 — UZ)Z L 10t tree level #"','
Nearly scale-invariant .-
fluctuations with

amplitude ¢ ~ 1"1/4H

{cp), Gel

Higgs fleictuations
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Higgs Fluctuations from Inflation

Equilibrium P(¢) « exp [—i—f;V(cb)]

Running A:
Fluctuations take the

Higgs over the barrier
if H = ¢, =~ 1019GeV B tree level

. quantum corrected e
(Espinosa et al. 2008; %
Lebedev&Westphal 2013;
Kobakhidze&Spencer-Smith 2013;
Fairbairn&Hogan 2014;

Hook et al. 2014)
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Does this imply
H < 10°GeV ?
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Higgs During Inflation

Inflation: Constant R = 12H?
Effective mass term

mZe = m§ + ER = mf + 128H?
Tree level: (Espinosa et al 2008)

&> 0: Increases barrier height

Makes the low-energy vacuum more stable
o ¢ < 0: Decreases barrier height

Makes the low energy vacuum less stable

v Vv

v

v

H contributes to loop corrections:
For H > ¢, V() =~ A(H)p* = No barrier! (Hmnr 2014)
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Potential in Curved Spacetime

One-loop computation in de Sitter:

‘S(I{fl(‘r:( 1) = —37'1 ?(k)p? - (1 : o (1) + Valp) — 126(p)H? + a(p)H?

Ly 10 [og (M ety (IME)]
+64ﬂ'2§ niM; (p) | log /," —d;| +n;H" log /'_, . (5.3)
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Potential in Curved Spacetime

One-loop computation for & = 0 (in units of s = 6.6 X 10° GeV)

0 = HMinst
Hy = 102.4173 st

1072 10° 10
Egtl/fulnst (MNRS 2018)
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(De-)Stabilising the Potential

£ = 0.06
36824
1]

~y

Vm ax

V(g)

£<0.02
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(De)Stabilising the Potential

-&-|nstability Threshold
gy =0

Eopy = 1/6

(MNRS 2018)

If H 2 pipse = 6.6 X 10°GeV and there is no new physics,
vacuum stability during inflation requires ¢ = 0.1
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Quantum Tunneling

Toy model potential Standard Model potential

L CdL Bounce 105

H Hawking-Moss solution

Ocrit
B, flat false vacuum action
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Multiple coexisting solutions (AR&Stopyra, PRD 2018)

Tunnelling rate ' ~ e ™5 nearly constant until
Hawking-Moss starts to dominate
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Multiple Solutions

=—CdL solution 1
== CdL solution 2
CdL solution 3
=== CdL solution 4
Hawking-Moss

(AR&Stopyra, PRD 2018)
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End of Inflation

» Reheating: Inflation (R = 12H?) = radiation (R = 0)

chzl)cpz — ¢?
Mg

» Effective Higgs mass m3; = m§ + &R oscillates:
> “Geometric preheating” (Bassett&Liberati 1998, Tsujikawa et al. 1999)

R(t) =

» R goes negative when ¢ ~ 0
o If ¢ > 0, Higgs becomes tachyonic (HMNR 2015)
> Exponential amplification

(p*n ~

2 2/&Xini 2
2 ( H ) e Mpj ~ H— eZﬁ
338 \27
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Vacuum Decay at the End of Inflation

‘. Ah=x 1(:)/'3,L-f\ -

-

Not enough

” “Instability!
grow NN

oy

Becomes
nonlinear

(HMNR 2015)
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Detailed Calculations

» Ema et a|’ DB siices0.bov

arXiv:1602:00483 W
o Lattice simulation
- £510 o

1111111111

» Kohri et al, arXiv: 1602 02100
° Linearised calculation
o & <540

» Figueroa, AR & Torrenti,
arXiv:1709.00398

o Lattice simulations

user: akraja
Wed Oct 517:11:24 2016
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Lattice Simulations

true
vacuum

100
m¢t
Figueroa, AR & Torrenti, arXiv:1709.00398

V(x) =m2x?, My = 172.12 GeV
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Instability Time

o m=172.12GeV
m m=172.73GeV |-
& m=173.34GeV
A m=173.95GeV
v m=174.56GeV |

Figueroa, AR & Torrenti, arXiv:1709.00398

Stability depends on top mass and speed of reheating
Miop = 173.34 GeV: vacuum decay before mt = 100if§ = 9
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Constraints on ¢

» Minimal scenario:
Standard Model + m?y? chaotic inflation,
no direct coupling to inflaton

0.06SESO
» 15 orders of magnitude stronger than the LHC bound
€] S 2.6 x 10%°

» Caveats:

> Assumes no direct coupling to inflaton (see Lebedev’s talk)
— Would still need |¢] < 0(1)

> Assumes no new physics
— Could stabilise potential altogether

o Assumes high scale inflation
—Need H = 10° GeV
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