The Case against Ghosts in Fundamental Theory

RP Woodard

University of Florida

PACTS: June 22, 2018

Three Quick Questions & Answers (Witnessing to the heathen)

- What is a ghost?
 - Particle with negative KE
- 2. Why should we avoid ghosts?
 - Interacting ghosts blow up the universe!
- 3. Why do people (here!) nonetheless consider ghosts?
 - They want to quantize gravity
 - Stelle (1977) \rightarrow $R + R^2 + C^2$ is renormalizable
 - Higher ∂ `s in C^2 give ghosts!

How Lower Derivatives Work

- Dynamical variable q(t) & Lagrangian $L(q,\dot{q})$
 - $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = \frac{\partial L}{\partial q}$ initial conditions \Rightarrow 2 canonical variables
- Canonical formulation
 - Q = q & $P = \frac{\partial L}{\partial \dot{q}}$ \rightarrow $\dot{q} = v(Q, P)$ (nondegeneracy)
 - H(Q,P) = Pv(Q,P) L(Q,v(Q,P))
- Hamilton's equations generate time evolution

•
$$\dot{Q} = \frac{\partial H}{\partial P} = v + P \frac{\partial v}{\partial P} - \frac{\partial L}{\partial \dot{q}} \frac{\partial v}{\partial P} = v$$

•
$$\dot{P} = -\frac{\partial H}{\partial Q} = -P\frac{\partial v}{\partial Q} + \frac{\partial L}{\partial q} + \frac{\partial L}{\partial \dot{q}}\frac{\partial v}{\partial Q} = \frac{\partial L}{\partial q}$$

• H(Q,P) can be bounded below

Higher Derivatives (Ostrogradsky 1850)

- Lagrangian $L(q, \dot{q}, \ddot{q})$
 - $\frac{d}{dt} \left[\frac{\partial L}{\partial \dot{q}} \frac{d}{dt} \left(\frac{\partial L}{\partial \ddot{q}} \right) \right] = \frac{\partial L}{\partial q}$ 4 initial conditions \Rightarrow 4 canonical coordinates
- Canonical Formulation
 - $Q_1 = q$, $P_1 = \frac{\partial L}{\partial \dot{q}} \frac{d}{dt} \left(\frac{\partial L}{\partial \ddot{q}} \right)$, $Q_2 = \dot{q}$, $P_2 = \frac{\partial L}{\partial \ddot{q}} \implies \ddot{q} = a(\vec{Q}, P_2)$ (ND)
 - $H(\vec{Q}, \vec{P}) = P_1 Q_2 + P_2 a(\vec{Q}, P_2) L(Q_1, Q_2, a(\vec{Q}, P_2))$
- Hamilton's equations generate time evolution

•
$$\dot{Q}_1 = \frac{\partial H}{\partial P_1} = Q_2$$
 , $\dot{Q}_2 = \frac{\partial H}{\partial P_2} = a + P_2 \frac{\partial a}{\partial P_2} - \frac{\partial L}{\partial \ddot{q}} \frac{\partial a}{\partial P_2} = a$

•
$$\dot{P}_2 = -\frac{\partial H}{\partial Q_2} = -P_1 - P_2 \frac{\partial a}{\partial Q_2} + \frac{\partial L}{\partial \dot{q}} + \frac{\partial L}{\partial \ddot{q}} \frac{\partial a}{\partial Q_2} = \frac{\partial L}{\partial \dot{q}} - P_1$$

• H is **linear** in P_1 \rightarrow not bounded below (or above)

Why this is bad

- No guaranteed problem w/o interactions
 - Problem is energy flow from KE < 0 to KE > 0
- No guaranteed problem w/o continuum DoF's
 - Instability is driven by vast d^3k UV phase space
 - Overwhelms even the weakest nonzero coupling
 - Decay is instantaneous
 - $\tau \neq 0$ results only come from imposing a UV cutoff
- Power & simplicity of the result
 - Requires only non-degenerate HD's
 - Non-perturbative &independent of interactions
 - This is the strongest constraint on Fundamental Theory!
 - "Newton got it right about F = ma"

Common Misconceptions

- "No problem at any constant q(t)"
 - Problem is pathological time dependence
- "Quantization might help"
 - This is a large phase space problem
- "Problem is unitarity, not instability"
 - Regards negative KE $a^{\dagger}(\vec{k})$ as positive KE $a(\vec{k})$
- "High mass ghosts decouple at low energies"
 - They actually couple more strongly!
- "No problem if HD's confined to interactions"
 - Problem is non-perturbative
- "No problem from entire functions of ∂^2 "
 - Only works perturbatively in Euclidean momentum space

Alternate Quantizations Sacrifice Classical Correspondence Limit

•
$$L = \frac{1}{2}m\dot{q}^2 - \frac{1}{2}m\omega^2q^2$$
 \rightarrow $H = \frac{1}{2m}P^2 + \frac{1}{2}m\omega^2Q^2$

•
$$a = \sqrt{\frac{m\omega}{2\hbar}} \left[Q + \frac{i}{m\omega} P \right] \rightarrow \sqrt{\frac{m\omega}{2\hbar}} \left[q + \frac{\hbar}{m\omega} \frac{\partial}{\partial q} \right]$$

•
$$a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left[Q - \frac{i}{m\omega} P \right] \rightarrow \sqrt{\frac{m\omega}{2\hbar}} \left[q - \frac{\hbar}{m\omega} \frac{\partial}{\partial q} \right]$$

- Normal Quantization: $\Omega(q) \propto \exp\left[-\frac{m\omega}{2\hbar}q^2\right]$
 - $H \cdot (a^{\dagger})^N \Omega = (N + \frac{1}{2})\hbar\omega \times (a^{\dagger})^N \Omega$
- Alternate Quantization: $\overline{\Omega}(q) \propto \exp\left[+\frac{m\omega}{2\hbar}q^2\right]$
 - $H \cdot a^N \overline{\Omega} = -(N + \frac{1}{2})\hbar\omega \times a^N \overline{\Omega}$
- ONLY data from low E gravity is classical GR
 - Dangerous to give this up
 - You won't get a local, metric theory → causality? Strong fields? Cosmology?
 - IF everything worked → just START with this and forget about HDG!

Only Hope is Constraints

- Constraints compromise non-degeneracy
- $R \to f(R)$ gravity ok
 - Ostrogradsky
 new DoF of opposite KE
 - But Newtonian potential has negative KE in GR
 - Hence new f(R) DoF has positive KE
 - NB This is <u>not</u> a counter-example to Ostrogradsky!
- But there are only so many gauge symmetries
- Could always try for ad hoc constraints
 - But at odds with interacting QFT
 - Same field carries both ± DoF's

Lessons from Pop Culture

- "You can't always get what you want"
 - Face it: C^2 just isn't viable as a fundamental theory
- "But if you try, sometimes you just might find, that you get what you need"
 - $C \ln(\square)C$ occurs in Γ_{1loop}
 - Coefficient finite & fixed
 - Stronger in the IR than C^2

Conclusions

- Ostrogradsky Thm is the strongest constraint on fundamental theory
- Need to distinguish effective field theory from fundamental theory
 - Fundamental ghosts present at all scales
 - Nonlocal EFT effects stronger than local
- Alternate quantization schemes discard the Correspondence Principle
 - This is not acceptable for gravity!