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e In this talk: I'll imagine n~150 of Higgs bosons being produced in a final
state at n lambda >> 1. Kinematically possible for scattering at E ~100 TeV

« HIGGSPLOSION: n-particle rates computed in a weakly-coupled theory
can become unsuppressed above certain critical values of n and E.

* will consider an intrinsically Non-perturbative — semiclassical set-up

e itincorporates correctly the tree-level results and
already known

the leading-order quantum effects = leading loops

v

In this talk:

* compute quantum effects in the large lambda n limit new



1->n processes of interest

e.g.:Vector boson fusion in high-energy for nggsp\OSIOH
pp collisions at ~100 TeV H
this talk: R(1->n)
quark pdfs
R
q > 't':¢"'v
v n non-relativistic Higgses
\/ s’ R - Higgsplosion aty/S«
q “ \‘4
quark pdfs arXiv:0806.05648

1
s. —m2 — ReX(s,) +im,I'(s,) Propagator with Higgspersion at/Sx

* VVK & Spannowsky 1704.03447,1707.01531
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Factorial growth of tree-level amplitudes at thresholds:

1
L: — 58“h(9uh —

A

prototype of the Higgs

2
A (h2 — ’02) in the unitary gauge

The classical equation for the spatially uniform field h(t),

d2h = —\h° + \?h,

has a closed-form solution with correct initial conditions hyy = v+ 2+ ...

ho(zo;t) =

o

1+20eimt/<2v>) m— VA

1 — zge™ /(2v)

ho(z) = v + 2v Z (2—7;)“ o z=2(t) = zge™
n=1

= n! (20)" Factorial growth

L. Brown 9209203




Analytic continuation & singularities in complex time:

t — te =t 4+t -

1 — etm(tc—iToo)

1 + e’im(t@—iToo)
ho(t@) = ( ) ,

=

1 <0
Too := — log (—)
m 2v

Our simple example of a classical solution
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Such solutions will emerge in the semiclassical approacﬂ@




Main idea of the semiclassical approach

R, (FE) is the probability rate for a local operator O(0) to create n particles of
total energy F from the vacuum,

1
Ro(E) — / i, (00" 5" Peln){n| P S 00

Pg is the projection operator on states with fixed energy E.
O = MO
and the limit 7 — 0 is taken in the computation of the probability rates,

1 . .
Ro(E) = lim | —d®, (0]e/MOT St Poln)in| P S el ™ |0) .
i—=0 | n!

Note: non-dynamical (non-propagating) initial state O|0).

The semi-classical (steepest descent) limit: _ E-nm
nm

A—0, n—o00, with An =fixed, e = fixed.

Evaluate the path integral in this double-scaling limit.
Rubakov & Tinyakov; Son 95 ... n enters via the coherent state formalism.



The Semiclassical formalism of Son: results in four steps

1. Solve the classical equation without the source-term:

6.5
oh(x)

= 0

a complex-valued solution h(x) with a point-like singularity at x* = 0.
The singularity is due to O(x = 0).

2. Impose the initial and final-time boundary conditions:

lim h(x) +/ L S
1111 X = U K
t—— 00 (27’(’)3/2 \/2&)1{ k
d>k 1 . .
. L wxT—0 —ik,x" T ikt
tlgrnoo h(z) = v+ / CEENE (bke e + b e )

e Son hep-ph/055338



The Semiclassical formalism of Son: results in four steps

3. Compute E and n of the final state using the ¢t — +o00 asymptotics
E = / Pk we bl b e T=0 n = / A3k bl by ewxT—0

At t — —oo the energy and the particle number are vanishing.
The energy changes discontinuously from 0 to £ at the singularity at ¢ = O.

4. Eliminate the T' and 6 parameters in favour of E and n.
Finally, compute the function W (E, n)

W(E,n) = ET — nf — 2ImS|h|

on the set {h(x), T, 0} and fine the semiclassical rate R,,(E) = exp [W(E,n)]

e Son hep-ph/055338



Refining the method in complex time

—

e In the Euclidean space-time, (7,Z) the solution will be singular a 3-
dimensional hypersurface 7 = 7¢(x) located at t = 0.
T N

Singularity surface
hl (:E) Y hg (CIJ‘)

E—;t

time evolution U
contour 70(T)

e Find a classical trajectory hy(7,Z) on the first segment 400 > 7 > 7¢(T)

e Find another classical solution hs(7,Z) on the remaining part of the con-
tour that at 7 — 79(Z) is singular and hs (79, Z) = h1(70, Z).



e For the combined configuration h(z) to solve classical equations every-
where, including the 7 surface:

need to extremize the action integral over all singularity surfaces 7 = 74(Z)

containing the point t =0 = .
L / dtﬁ(h2)>
0

To(f)
iS[h] = /dsx (/ d7 Lxuc(h1)

+ o0
A

0
/ 07 Lrset(ha)
TO (f)

T

hi(70(Z)) = ha(70(Z)) A

Find Extremum of iS over all such singularity surfaces:




and finally...

e Find the semiclassical rate R, (E) = V(&) by evaluating
W(E,n) = ET — nf — 2ImS|h|

on the extremal singular surface 7y(%): 4

recall that:

Classical solultions A1 and ho:
limT_>+OO hl(T, CI?) — v — 0

hg(T(),f) — hl(To,f) — (I)()(f) — OO

d>k 1 . .
. =2\ — (.UkT—Q —’I,k"UJCUH’ T 'Lk',u,xlu
tlgrnoo ho(t, %) — v / RN (bk e e + b e )

=1



Computing the semiclassical rate

Classical solution singular on a generic tau_0 surfaces:

) + ¢(tc, 7)

1 — eim(t@ —iToo)

Find that:

W(E,n) = FET — nb — QRGSEHCI[]Z]

A 3 3
= n log Zn + g (log il + 1) — 2nM Too — 2ReSEucl|h]
5 °
< > ; < >
W(E, n)tree Aunant
agrees with the known result + need to compute by extremizing w.r.t tau_0

of tree-level contributions

S|



Computing the semiclassical rate

AWt — - 9nm 1. — 2Re S]glugl)
+00 0
— 2nm\7'00| + 2/61332‘[/ dTﬁEuCl(hl) — / dTﬁEud(hg)]
70(%) A 70(%) A
Force x height E=0 configuration
R E=mn configuration
1 uant Ot — Am 3
> —AWA4 = NM |Too| — At Lguci(ho; 10(%)) + — puR
2 A-+ie 3
= ~ ~~ d
: : = SEucl [7_0 (f)]
................ ‘V . A
Surface-energy : :
Force x height Surface-energy

Mechanical analogy: surface at equilibrium/balance of forces



Computing the semiclassical rate

Use thin wall approximation:

0 0
Spuctl0(r)] = / drdmpr/1 472 = / dr L(r.7)

A

. +oo—1€ 1 dh 2 )\ ) ) 5 m3
Surface tension o= / dr (2 (E) + Z (h? —v?)" | = o

—00—1€

Conjugate momentum Hamiltonian => Energy

OL(r,7) r2y
or V1+ 72

H(p,r) = L(r,7) — p7

1 t 0 4 3
— AWM = (F —nm)1 — / p(E)dr + — uR
2 R 3
Quantum rate on the stationary trajectory:
L Appavant _ [ umar s T ur. EB-
5 stationary — 5 p( ) ot ? 1% 9 — nm



Computing the semiclassical rate

Use thin wall approximation:

1 quant | A 3
§AW stationary — p(E) dr + ?MR 7 L =nm
R
final result 3/2
E°7< 21(5/4 1 2 I'(5/4
AWy auant — (5/4) —()\n)?’/2 (5/4) ~ 0.854nV An

Vi 3T(3/4) — X V3 [(3/4)

%(T — Too)

Classical trajectory tau(r):

Justifies the thin wall approximation:

g7\ 2 7\ 1/2
Terom:m( ) o<<)\—> = Van > 1. r(%:i

A7 1 m



Computing the semiclassical rate

Use thin wall approximation:

1 quant | A 3
§AW stationary — /R p(E) dr + ?/’LR ; E =nm
final result 3/2
E°r= 2 1(5/4 1 2 I'(5/4
AWyauant — 2T(5/4) _ ~ (An)3/? (5/4) ~ 0.854nVAn
Vi 3T(3/4) ~ V3 T(3/4)
E‘Too‘ R E‘TOO‘




. - VVK 1806.05648
Summary of the main result

A—0, n—=oo, with An=fixed>1, e=fixed K1

A A 2
Ro(E) = W EN — exp [—” (log—n +0.85VAn — 1+ §(1<)gi + 1) _ —55>]

A 4 2 3T 12
A A '
> EM=205s | . E/m=(1+¢)n
e : :
E/M=200 positive negative
100y ! (quantum effects) (phase space)
E/M=195

A

0.01

. E/M=190

Can always make this term win =>
e e w0 s unsuppressed R at high Energies

Higher order corrections are suppressed by extra powers of
A— 0and 1/n — 0 and by O(1/vAn) as well as by O(e).
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(Extra slides) looking ahead



e The semiclassical calculation reviewed in the talk was aimed towards
developing a theoretical foundation for the mechanism of Higgsplosion
i
p? —m? — ReXp(p?) + imI'(p?) + ic

o Ag(p) =

R <n Higgsplosion

Loop integrals are effectively cut off at E, by the exploding width I'(p?) of the
propagating state into the high-multiplicity final states.

The incoming highly energetic state decays rapidly into the multi-particle state
made out of soft quanta with momenta k? ~ m? << E2.

The width of the propagating degree of freedom becomes much greater than its
mass: it is no longer a simple particle state.

In this sense, it has become a composite state made out of the n soft particle
quanta of the same field ¢.

o VVK & Spannowsky 1704.03447, 1707.01531
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The Higgsplosion / Higgspersion mechanism makes theory UV finite (all
loop momentum integrals are dynamically cut-off at scales above the
Higgsplosion energy).

UV-tiniteness => all coupling constants slopes become flat above the
Higgsplosion scale => automatic asymptotic safety

[Below the Higgsplosion scale there is the usual logarithmic running]

1. Asymptotic Safety

2. No Landau poles for the U(1) and the Yukawa couplings

3. The Higgs self-coupling does not turn negative => stable EW vacuum

No new physics degrees of freedom required — very minimal solution
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