Gravity with more or less variables

and a route to unification

Roberto Percacci¹

¹SISSA, Trieste, Italy

PACTS 2018 Tallinn, June 18, 2018

Outline

Off shell GR

- Off shell GR
- 2 Gravitational Higgs phenomenon
- GraviGUT
- 4 Conclusions

Five formulations of GR: EG

Off shell GR

•000000000

$$S_{\mathrm{EG}}(g) = Z_N \int d^4 x \, \sqrt{|g|} \, R \qquad \mathrm{where} \qquad Z_N = rac{1}{16\pi G} \, .$$

Invariant under Diff M

Five formulations of GR: DG

$$S_{
m DG}(g,\phi)=S_{
m EG}(ar g)$$
 where $ar g_{\mu
u}=rac{lpha}{Z_N}\phi^2g_{\mu
u}$

$$S_{\mathrm{DG}}(g,\phi) = \alpha \int d^4x \sqrt{|g|} \left[\phi^2 R - 6\phi \nabla^2 \phi\right]$$

Invariant under *Diff* ⋉ *Weyl*

$$g_{\mu\nu} o \Omega^2 g_{\mu\nu} \;, \qquad \phi o \Omega^{-1} \phi \;.$$

Off shell GR

000000000

$$\sqrt{|g|} = \omega$$

$$S_{\rm UG}(g) = Z_N \int d^4x \,\omega\, R$$
.

Invariant under SDiff M

Off shell GR

0000000000

$$S_{ ext{UD}}(oldsymbol{g},\phi) = lpha \int oldsymbol{d}^4 x \, \omega \, \left[\phi^2 oldsymbol{R} - 6\phi
abla^2 \phi
ight] \, .$$

Invariant under Diff * M

Five formulations of GR: WTDiff

Off shell GR

000000000

$$\phi = \phi_0 \left(\frac{|g|}{\omega^2} \right)^{-\frac{1}{8}} .$$

$$S_X(g) = Z_N \int d^4x \, |g|^{\frac{1}{4}} \, \omega^{\frac{1}{2}} \Big[R + \frac{3}{32} \, \Big(|g|^{-1} \nabla |g| - 2\omega^{-1} \nabla \omega \Big)^2 \, \Big]$$

Invariant under *SDiff M* \times *Weyl*

Five formulations of GR: summary

Hamiltonian formulation

	DG	EG	UG
fields	q_{ij}, N_i, N, ϕ	q_{ij},N_i,N	q_{ij},N_i
momenta	p^{ij},P^i,P,π	p^{ij},P^i,P	p^{ij},P^i
# can. variables	22	20	18
primary constr.	P^i , P , C	P^i, P	P ⁱ
secondary constr.	$\mathcal{H}_i,\mathcal{H}$	$\mathcal{H}_i,\mathcal{H}$	$\mathcal{H}_i,\mathcal{H}_{\Lambda}$
# 1st cl. constr.	9	8	7
# canonical d.o.f.	4	4	4

R. De Leon Ardon, S. Gielen, R. P., arXiv:1805.11626 [gr-qc]

Which is best?

Gauge invariances needed in order to deal with local d.o.f. The gauge group of all except UG is unnecessarily large.

On the other hand:

- extending the gauge group is useful to recognize equivalences between different formulations
- larger gauge group means that certain singular configurations could only be gauge artifacts (e.g. big bang)
- 3. suggest route to unification

Further extension to GL(4)

GL(4)-invariant formulation:

$$g_{\mu
u}= heta^{\mathsf{a}}{}_{\mu}\, heta^{\mathsf{b}}{}_{
u}\,\gamma_{\mathsf{a}\mathsf{b}}$$

$$\theta \mapsto \Lambda^{-1}\theta$$
, $\gamma \mapsto \Lambda^{T}\gamma\Lambda$

Different gauge fixings of GL(4):

- $\theta_{\mu}^{a} = \delta_{\mu}^{a}$ metric formulation
- $\gamma_{ab} = \eta_{ab}$ vierbein formulation

Reformulation of GR

Off shell GR

000000000

$$S(\theta, \gamma) = S_{EG}(g)$$

This is the linking theory for metric and tetrad gravity. Shows that θ and γ are Goldstone bosons.

Higgsless Higgs mechanism

Reconcile mass with gauge invariance Goldstone bosons $\sigma \in G/H$ coupled to G-YM fields A_{μ} .

$$-\frac{1}{2}D\sigma^2$$
 where $D\sigma = \partial\sigma + A^iK_i(\sigma)$

$$\mathcal{L}(G) = \mathcal{L}(H) \oplus \mathcal{P} \ A = A|_{\mathcal{L}(H)} + A|_{\mathcal{P}}$$

In unitary gauge $\sigma = \sigma_0$
 $D\sigma_0 = A^i|_{\mathcal{P}}K_i(\sigma_0)$

T. Appelquist, C.W. Bernard, Phys.Rev.D22:200,1980. A.C. Longhitano, Phys.Rev.D22:1166,1980.

Higgsful Higgs mechanism

Off shell GR

Higgs field $\phi \in V$, and σ parametrize orbit of G in V $W = \frac{\lambda}{4}(\rho^2 - \rho_0^2)^2$, with $\rho = |\phi|$. $\lim_{\lambda\to\infty} W$ with ρ_0 =const

- for $p \ll m_{\rho}$, $\rho = \rho_0$ (Higgsless model as low energy EFT)
- for $p \ll m_A$, $A|_{\mathcal{P}} = 0$ or $D\sigma = 0$

Independent connection

Off shell GR

Allow dynamical connection: Palatini and Einstein-Cartan are off-shell reformulations of EG: Connection is dynamically set equal to Levi-Civita.

Consider more general dynamics, e.g. curvature squared terms.

Off shell GR

Spacetime manifold M, dimM=4 E real vectorbundle with fiber dimension 4 local bases $\{\partial_{\mu}\}$ in TM and $\{e_a\}$ in E

- pseudo-fiber metric in E, γ_{ab} signature +, +, +, -
- soldering form θ^a_{μ} , $\det \theta \neq 0$
- linear connection in E, $A_{\mu}{}^{a}{}_{b}$

Induced structures in TM

•
$$g_{\mu\nu} = \theta^a{}_{\mu} \, \theta^b{}_{\nu} \, \gamma_{ab}$$

$$\bullet \ \Gamma_{\lambda}{}^{\mu}{}_{\nu} = \theta^{-1}{}_{a}{}^{\mu} A_{\lambda}{}^{a}{}_{b} \theta^{b}{}_{\nu} + \theta^{-1}{}_{a}{}^{\mu} \partial_{\lambda} \theta^{a}{}_{\nu}$$

Torsion and Nonmetricity

$$\bullet \ \Theta_{\mu}{}^{a}{}_{\nu} = \partial_{\mu}\theta^{a}{}_{\nu} - \partial_{\nu}\theta^{a}{}_{\mu} + \mathbf{A}_{\mu}{}^{a}{}_{b}\theta^{b}{}_{\nu} - \mathbf{A}_{\nu}{}^{a}{}_{b}\theta^{b}{}_{\mu}$$

$$\bullet \ \Delta_{\lambda ab} = -\partial_{\lambda}\gamma_{ab} + {A_{\lambda}}^{c}{}_{a}\gamma_{cb} + {A_{\lambda}}^{c}{}_{b}\gamma_{ac}$$

Gravitational Higgs mechanism v.I

$$S_{m} = \int d^{4}x \sqrt{|\det g|} \left[A^{\mu}_{a}{}^{\nu\rho}_{b}{}^{\sigma} \Theta_{\mu}{}^{a}_{\nu} \Theta_{\rho}{}^{b}_{\sigma} + B^{\mu ab\nu cd} \Delta_{\mu ab} \Delta_{\nu cd} + C^{\mu}_{a}{}^{\nu\rho cd} \Theta_{\mu}{}^{a}_{\nu} \Delta_{\rho cd} \right]$$

expanding around flat background: $\emph{A}=$ 0, $\theta=$ 1, $\gamma=\eta$

$$egin{array}{lcl} \Theta_{\mu}{}^{a}{}_{
u}&=&A_{\mu}{}^{a}{}_{
u}-A_{
u}{}^{a}{}_{\mu} \ \Delta_{\mu ab}&=&A_{\mu ab}+A_{\mu ba} \end{array}$$

S contains

$$S_m = rac{1}{2} \int d^4 x \, \sqrt{|\det g|} \, \, Q^{\mu}{}_{a}{}^{b
u}{}_{c}{}^{d} \, A_{\mu}{}^{a}{}_{b} \, A_{
u}{}^{c}{}_{d}$$

Levi–Civita Connection

given θ , γ , there is a unique \bar{A} such that $\bar{\Theta} = 0$, $\bar{\Delta} = 0$

$$\begin{split} \bar{A} &= \frac{1}{2} \big(\theta^{-1}{}_{c}{}^{\lambda} \, \partial_{\lambda} \kappa_{ab} + \theta^{-1}{}_{a}{}^{\lambda} \, \partial_{\lambda} \kappa_{bc} - \theta^{-1}{}_{b}{}^{\lambda} \, \partial_{\lambda} \kappa_{ac} \big) + \frac{1}{2} \big(C_{abc} + C_{bac} - C_{cab} \big) \end{split}$$
 where $C_{abc} = \gamma_{ad} \, \theta^{d}{}_{\lambda} \big(\theta^{-1}{}_{b}{}^{\mu} \, \partial_{\mu} \theta^{-1}{}_{c}{}^{\lambda} - \theta^{-1}{}_{c}{}^{\mu} \, \partial_{\mu} \theta^{-1}{}_{b}{}^{\lambda} \big)$

Gravitational Higgs mechanism v.II

Any connection A can be split uniquely in $A = \bar{A} + \Phi$ then $S(A, \gamma, \theta) = S(\bar{A}(\theta, \gamma) + \Phi, \theta, \gamma) = S'(\Phi, \theta, \gamma)$

$$\begin{array}{lcl} \Theta_{\mu}{}^{a}{}_{\nu} & = & \Phi_{\mu}{}^{a}{}_{\nu} - \Phi_{\nu}{}^{a}{}_{\mu} \\ \\ \Delta_{\mu ab} & = & \Phi_{\mu ab} + \Phi_{\mu ba} \end{array}$$

therefore

Off shell GR

$$S_m = rac{1}{2} \int d^4 x \, \sqrt{|\det g|} \, \, Q^{\mu}{}_{a}{}^{b
u}{}_{c}{}^{d} \, \Phi_{\mu}{}^{a}{}_{b} \, \Phi_{
u}{}^{c}{}_{d}$$

For $p \ll m$, $\Theta = \Delta = 0$ and therefore $A = \bar{A}(\theta, \gamma)$

Lesson and questions

Off shell GR

The fact that the connection is a composite of the metric/vierbein is a feature of the low energy EFT.

Main questions for quantum theory of spacetime:

- why is the metric nondegenerate?
- what is the dynamical origin of the Planck scale?

Grand Unification to do list

- i. identify GUT group G
- ii. fit particles in irreps of G
- iii. write \mathcal{G} -invariant action
- iv. explain symmetry breaking (select order parameter, orbit, potential)
 - v. check that new particles not seen at low energy have high mass

Off shell GR

$$G_1 = SO(1,3), G_2 = SO(10), G = SO(1,13) \text{ or } G = SO(3,11)$$

keep dimM=4, enlarge fibers of E to have dimension N>4order parameter is soldering form

$$\gamma = \begin{bmatrix} \eta & 0 \\ 0 & \mathbf{1}_{N-4} \end{bmatrix} , \quad \theta \text{ is } 4 \times N \text{ matrix, e.g. } \langle \theta \rangle = \begin{bmatrix} \mathbf{1}_4 \\ 0 \end{bmatrix}$$

GraviGUT III

Gravitational Higgs phenomenon:

$$A = \begin{bmatrix} A^{(4)} & H \\ H^T & A^{(10)} \end{bmatrix}$$

kinetic term of θ gives mass to $A^{(4)}$, H, SO(10) remains unbroken

R.P. Phys. Lett. B 144, 37 (1984), Nucl. Phys. B 353, 271, (1991).

Fermions I

SO(3,11) has Majorana-Weyl representation $\mathbf{64_R}$ that decomposes under $SO(3,1) \times SO(10)$ as

$$64_R=2_C\times 16_C$$

Remark: SO(1,13) has Weyl $\mathbf{64_C}$ decomposing as $\mathbf{64_C} = \mathbf{2_C} \times \mathbf{16_C} + \overline{\mathbf{2}_C} \times \overline{\mathbf{16}_C}$

F. Nesti, R.P., Phys. Rev. D 81, 025010 (2010) arXiv:0909.4537 [hep-th]

Fermions II

$$\mathcal{D}_{\mu}\psi_{\mathsf{L}+} = \left(\partial_{\mu} + rac{1}{2} \mathcal{A}_{\mu}^{ij} \Sigma_{\mathsf{L}\,ij}^{(3,11)}
ight) \psi_{\mathsf{L}+}$$

let $\Sigma_{ij}^{\dagger}A=-A\Sigma_{ij}$ then $\psi_{L+}^{\dagger}(A\gamma^{i})_{L}D\psi_{L+}$ is one-form in **14** of SO(3,11)

$$\mathcal{S} = \int \psi_{L+}^{\dagger} (A \gamma^i)_L D \psi_{L+} \, \wedge heta^j \wedge heta^k \wedge heta^\ell \, \phi_{ijk\ell} \, .$$

Fermions III

Assuming the following VEVs:

$$\left\{ \begin{array}{l} \phi_{\textit{mnrs}} = \epsilon_{\textit{mnrs}} \\ \phi_{\textit{ijk}\ell} = 0 \end{array} \right. \text{ otherwise} \qquad \left\{ \begin{array}{l} \theta_{\mu}^{\textit{m}} = \textit{Me}^{\textit{m}}_{\;\mu} \\ \theta_{\mu}^{\textit{a}} = 0 \end{array} \right. \text{ otherwise}$$

we find after some work

$$\mathcal{S} = \int d^4 x \, \eta^\dagger \sigma^\mu
abla_\mu \eta \, ,$$

where now
$$abla_{\mu} = \mathcal{D}_{\mu}^{(10)} = \partial_{\mu} + \frac{1}{2} \mathcal{A}_{\mu\,(10)}^{ab} \Sigma_{ab}^{(10)}$$

Status of GraviGUT

- kinematics well understood
- bosonic action for broken phase can be written
- fermionic content and dynamics ok
- hard to write action that works in both phases

K. Krasnov, R.P., CQG (to appear) arXiv:1712.03061 [hep-th]

Conclusions

Off shell GR

- Recent work seek dynamical origin of Planck scale in a scale-invariant theory
- View m_{P}^{-2} as the VEV of the metric, which is clearly an order parameter distinguishing phases
- The low energy EFT presents a "Higgsless Higgs" phenomenon" giving mass to the connection
- This suggests a unification of the SM and gravitational interactions