The Flavor of h

PACTS 2018 20 June 2018

Yossi Nir (Weizmann Institute)

Based on...

- Dery, Efrati, Hochberg, YN, JHEP 1305, 039
 - What if $BR(h \to \mu\mu)/BR(h \to \tau\tau) \neq m_{\mu}^2/m_{\tau}^2$?
- Dery, Efrati, Hiller, Hochberg, YN, JHEP 1308, 006
 - Higgs couplings to fermions: 2HDM with MFV
- Dery, Efrati, YN, Soreq, Susič, PRD90, 115022
 - Model building for flavor changing Higgs couplings
- Aloni, YN, Stamou, JHEP 1604, 162
 - Large $BR(h \rightarrow \tau \mu)$ in the MSSM?
- Dery, YN, JHEP 1704, 003
 - FN-2HDM: Two Higgs doublet models with Froggatt-Nielsen symmetry
- Dery, Frugiuele, YN, JHEP 1804, 044
 - Large Higgs-electron Yukawa coupling in 2HDM

Plan of Talk

The flavor puzzles

The SM flavor of h

The BSM flavor of h

What if $\kappa_e \gg 1$?

The Flavor Puzzles

SM

- Why is there structure in the charged fermion flavor parameters?
- Smallness and hierarchy

V

- Why is the neutrino flavor structure different?
- Neither smallness nor hierarchy

NP

- If there is TeV-scale NP, why doesn't it affect FCNC?
- Degeneracy and alignment

Can we make progress?

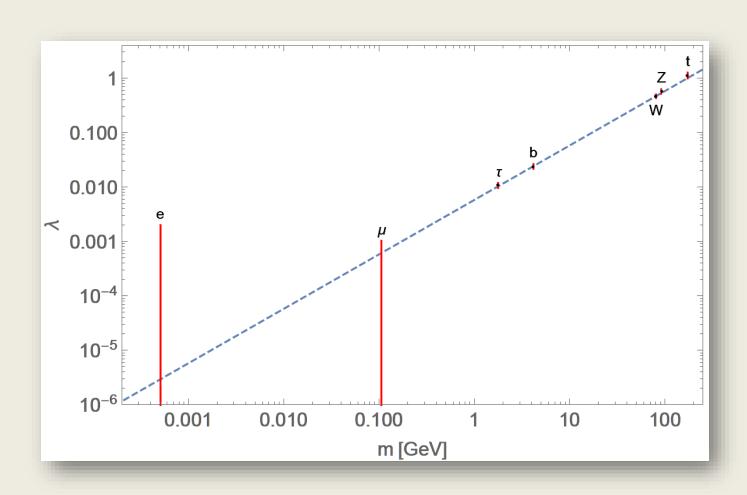
- NP that couples to quarks/leptons → New flavor parameters (spectrum, flavor decomposition) that can be measured
- The NP flavor structure can be
 - MFV
 - Related but not identical to SM
 - Unrelated to SM or even anarchical
- The NP flavor puzzle:
 - With ATLAS/CMS we are likely to understand how it is solved
- The SM flavor puzzle:
 - Progress possible if structure not MFV but related to SM
- $h \rightarrow$ The "NP" is already here!
 - Y_{ij} are new flavor parameters that can be measured

Higgs Data

Observable	Experiment
$\mu_{\gamma\gamma}$	1.14 ± 0.14
μ_{ZZ^*}	1.17 ± 0.23
μ_{WW^*}	0.99 ± 0.15
$\mu_{bar{b}}$	0.98 ± 0.20
$\mu_{ au au}$	1.09 ± 0.23
μ_{tth}	1.29 ± 0.18
$\mu_{\mu\mu}$	< 2.8
μ_{ee}	$< 4 \times 10^{5}$

SM: $Y_F = (\sqrt{2}/\nu)M_F$

Proportionality


$$^{y_i}/y_j = ^{m_i}/m_j \quad (y_i \equiv Y_{ii})$$

Factor of proportionality

$$y_i/m_i = \sqrt{2}/v$$

- Diagonality
 - $Y_{ij} = 0$ for $i \neq j$

Proportionality?

Diagonality?

Observable Experiment		$Y_{ij} \leq$
$BR(t \to ch)$	$\leq 2.2\times 10^{-3}$	9.0×10^{-2}
$BR(t \to uh)$	$\leq 2.4\times 10^{-3}$	9.4×10^{-2}
$BR(h \to \tau \mu)$	$\leq 2.5 \times 10^{-3}$	1.4×10^{-3}
$BR(h \to \tau e)$	$\leq 6.1 \times 10^{-3}$	2.3×10^{-3}
$BR(h \to \mu e)$	$\leq 3.4 \times 10^{-4}$	6.0×10^{-4}

Higgs Flavor Tests

- $y_e, y_\mu < y_\tau$
- y_t, y_b, y_τ not far from SM $y_{3rd}/m_{3rd} \sim \sqrt{2}/v$
- $\frac{y_{tq}}{y_t} < 0.1$, $\frac{y_{\tau l}}{y_{\tau}} < 0.1$, $\frac{y_{\mu e}}{y_{\mu}} < 0.1$

The beginning of Higgs flavor physics

The BSM flavor of h

BSM: $Y_F \neq (\sqrt{2}/v)M_F$?

With new physics, it can be that:

Factor of proportionality is different

•
$$y_i/m_i \neq \sqrt{2}/v$$

Proportionality is violated

$$v_i/y_j \neq m_i/m_j$$

- h has off-diagonal couplings
 - $Y_{ij} \neq 0$ for $i \neq j$

Solutions to flavor puzzles

- Natural Flavor Conservation (NFC)
 - Solution to the 2HDM flavor puzzle
 - Universal correction to diagonal couplings
- Minimal Flavor Violation (MFV)
 - Solution to the NP flavor puzzle
 - Non-universal correction to diagonal couplings
- Froggatt-Nielsen mechanism (FN)
 - Solution to the SM and NP flavor puzzles
 - Non-universal correction to diagonal couplings + offdiagonal couplings

h-testing flavor models

• SM-EFT

Model	$\frac{Y_{\tau}^2}{2m_{\tau}^2/v^2}$	$\frac{Y_{\mu}^{2}/Y_{\tau}^{2}}{m_{\mu}^{2}/m_{\tau}^{2}}$	$\frac{Y_{\mu\tau}^2}{Y_{\tau}^2}$
SM	1	1	0
MFV^*	$1 + \mathcal{O}(v^2/\Lambda^2)$	$1 + \mathcal{O}(m_{ au}^2/\Lambda^2)$	0
FN	$1 + \mathcal{O}(v^2/\Lambda^2)$	$1 + \mathcal{O}(v^2/\Lambda^2)$	$\mathcal{O}(U_{\mu3} ^2 v^4/\Lambda^4)$
GL	9	25/9	$\mathcal{O}(10^{-2})$

FN-2HDM

- Yukawa couplings:
 - Approximate NFC type II or IV
- Scalar potential:
 - Approximate PQ symmetry
- Both approximations broken by small parameter:

$$-\epsilon_{PQ} = \epsilon_{FN}^{|H(\phi_1) - H(\phi_2)|}$$

• Strongest constraint from $\mu \rightarrow e\gamma$:

$$-\epsilon_{PQ} < 10^{-3}$$

h-testing flavor models

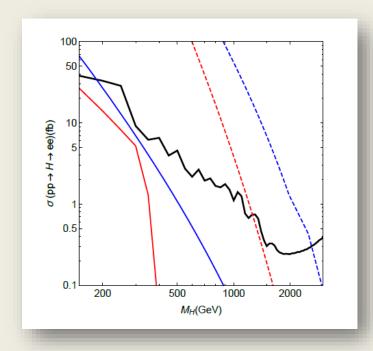
• 2HDM

Model	$\frac{Y_{\mu}/Y_{\tau}}{m_{\mu}/m_{\tau}}$	$Y_{\mu\tau}$	$\frac{Y_c/Y_t}{m_c/m_t}$	Y_{ct}
NFC	1	0	1	0
MFV	$1 + \mathcal{O}(y_{\tau}^2)$	0	$1 + \mathcal{O}(y_t^2)$	$\mathcal{O}(y_t y_b^2 V_{cb} V_{tb}^*)$
FN	$1 + \mathcal{O}(\epsilon_{\mathrm{PQ}})$	$\mathcal{O}(y_{\tau}U_{\mu3}\epsilon_{\mathrm{PQ}})$	$1 + \mathcal{O}(\epsilon_{\mathrm{PQ}})$	$\mathcal{O}(y_t V_{cb} \epsilon_{\mathrm{PQ}})$

κ_f in general 2HDM

- Without loss of generality, choose a basis where $(Y^2)_{ii} = 0$
- If $(Y^2)_{ii} = (Y^2)_{jj} = 0$:
 - $-\kappa_i = \kappa_j$
 - Couplings to A, H, H^{\pm} related
- If $(Y^2)_{ii} = 0$, $(Y^1)_{jj} = 0$:
 - $\kappa_V = (1 + \kappa_i \kappa_j) / (\kappa_i + \kappa_j)$
 - Couplings to A, H, H^{\pm} related
- Many implications for 2HDM where one of the doublets couples to only the third generation, or to only the first generation, etc.

The scalar spectrum with $\kappa_f \gg 1$


• With hard breaking of Z_2 :

•
$$v^2 \ll m_A^2 \ll \frac{v^2 \kappa_f}{\sqrt{1-\kappa_V^2}}$$
 possible

- Otherwise:
 - $m_A \sim v$

$\kappa_e \gg 1$

- The scalar potential and the Yukawa couplings must be CP conserving to excellent approximation, $O(10^{-2}/\kappa_e)$
- LHC searches for e^+e^- resonances are excellent probe

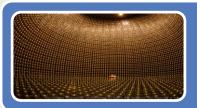
$$\kappa_e=500$$
, $m_H=m_A$

Region above black curve excluded

Blue:
$$Y_{u,d,e}^2 = 0$$
, $Y_{t,b,\tau,c,s,\mu}^1 = 0$

Red:
$$Y_t^{A,H} = 0$$

Flavored Conclusions


Quarks: smallness, hierarchy

⇒ Approximate symmetry?

Squarks: degeneracy, alignment

⇒ Flavor paradise, but where are they?

Neutrinos: anarchy ⇒ Knowing more does not necessarily mean understanding better

Higgs: diagonality? proportionality?

⇒ a new opportunity for flavor