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Inflation
The inflationary scenario is based on the two cornerstone
independent ideas (hypothesis):

1. Existence of inflation (or, quasi-de Sitter stage) – a stage of
accelerated, close to exponential expansion of our Universe in
the past preceding the hot Big Bang with decelerated,
power-law expansion.

2. The origin of all inhomogeneities in the present Universe is
the effect of gravitational creation of particles and field
fluctuations during inflation from the adiabatic vacuum
(no-particle) state for Fourier modes covering all observable
range of scales (and possibly somewhat beyond).

NB. This effect is similar to particle creation by black holes,
but no problems with the loss of information, ’firewalls’,
trans-Planckian energy etc. in cosmology, as far as
observational predictions are calculated.



Outcome of inflation
In the super-Hubble regime (k � aH) in the coordinate
representation:

ds2 = dt2 − a2(t)(δlm + hlm)dx ldxm, l ,m = 1, 2, 3

hlm = 2R(r)δlm +
2∑

a=1

g (a)(r) e(a)lm

e
l(a)
l = 0, g

(a)
,l e

l(a)
m = 0, e

(a)
lm e lm(a) = 1

R describes primordial scalar perturbations, g – primordial
tensor perturbations (primordial gravitational waves (GW)).

The most important quantities:

ns(k)− 1 ≡ d lnPR(k)

d ln k
, r(k) ≡ Pg

PR



In fact, metric perturbations hlm are quantum (operators in
the Heisenberg representation) and remain quantum up to the
present time. But, after omitting of a very small part,
decaying with time, they become commuting and, thus,
equivalent to classical (c-number) stochastic quantities with
the Gaussian statistics (up to small terms quadratic in R, g).

In particular:

R̂k = Rk i(âk−â†k)+O
(

(âk − â†k)2
)

+...+O(10−100)(âk+â†k)+, , ,

The last term is time dependent, it is affected by physical
decoherence and may become larger, but not as large as the
second term.

Remaining quantum coherence: deterministic correlation
between k and −k modes - shows itself in the appearance of
acoustic oscillations (primordial oscillations in case of GW).



CMB temperature anisotropy

Planck-2015: P. A. R. Ade et al., arXiv:1502.01589



CMB temperature anisotropy multipoles
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CMB E-mode polarization multipoles
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Present status of inflation
Now we have quantitative observational data: the primordial
spectrum of scalar perturbations has been measured and its
deviation from the flat spectrum ns = 1 in the first order in
|ns − 1| ∼ N−1H has been discovered (using the multipole range
` > 40).

< R2(r) >=

∫
PR(k)

k
dk , PR(k) =

(
2.21+0.07

−0.08
)

10−9
(
k

k0

)ns−1

k0 = 0.05Mpc−1, ns − 1 = −0.035± 0.005

Two fundamental observational constants of cosmology in
addition to the three known ones (baryon-to-photon ratio,
baryon-to-matter density and the cosmological constant).
Existing inflationary models can predict (and predicted, in
fact) one of them, namely ns − 1, relating it finally to
NH = ln kB Tγ

~H0
≈ 67.2 (note that (1− ns)NH ∼ 2).



From ”proving” inflation to using it as a tool

Present status of inflation: transition from ”proving” it in
general and testing some of its simplest models to applying
the inflationary paradigm to investigate particle physics at
super-high energies and the actual history of the Universe in
the remote past using real observational data on ns(k)− 1 and
r(k).

The reconstruction approach – determining curvature and
inflaton potential from observational data – a kind of inverse
dynamical problem.

The most important quantities:
1) for classical gravity – H , Ḣ
2) for super-high energy particle physics – m2

infl .



Physical scales related to inflation

”Naive” estimate where I use the reduced Planck mass
M̃Pl = (8πG )−1.

I. Curvature scale

H ∼
√
PζM̃Pl ∼ 1014GeV

II. Inflaton mass scale

|minfl | ∼ H
√
|1− ns | ∼ 1013GeV

New range of mass scales significantly less than the GUT scale.



Direct approach: comparison with simple smooth

models
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Combined BICEP2/Keck Array/Planck results
P. A. R. Ade et al., Phys. Rev. Lett. 116, 031302 (2016)
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The simplest models producing the observed scalar

slope

L =
f (R)

16πG
, f (R) = R +

R2

6M2

M = 2.6× 10−6
(

55

N

)
MPl ≈ 3.2× 1013GeV

ns − 1 = − 2

N
≈ −0.036, r =

12

N2
≈ 0.004

N = ln
kf

k
= ln

a0Tγ
k
−O(10), HdS (N = 55) = 1.4×1014GeV

The same prediction from a scalar field model with
V (φ) = λφ4

4
at large φ and strong non-minimal coupling to

gravity ξRφ2 with ξ < 0, |ξ| � 1, including the
Brout-Englert-Higgs inflationary model.



The simplest purely geometrical inflationary model

L =
R

16πG
+

N2

288π2Pζ(k)
R2 + (small rad. corr.)

=
R

16πG
+ 5× 108 R2 + (small rad. corr.)

The quantum effect of creation of particles and field
fluctuations works twice in this model:
a) at super-Hubble scales during inflation, to generate
space-time metric fluctuations;
b) at small scales after inflation, to provide scalaron decay into
pairs of matter particles and antiparticles (AS, 1980, 1981).

Weak dependence of the time tr when the radiation dominated
stage begins:

N(k) ≈ NH + ln
a0H0

k
− 1

3
ln
MPl

M
− 1

6
ln(MPltr )



The most effective decay channel: into minimally coupled
scalars with m� M . Then the formula

1√−g
d

dt
(
√−gns) =

R2

576π

(Ya. B. Zeldovich and A. A. Starobinsky, JETP Lett. 26, 252
(1977)) can be used for simplicity, but the full
integral-differential system of equations for the Bogoliubov
αk , βk coefficients and the average EMT was in fact solved in
AS (1981). Scalaron decay into graviton pairs is suppressed
(A. A. Starobinsky, JETP Lett. 34, 438 (1981)).

For this channel of the scalaron decay:

N(k) ≈ NH + ln
a0H0

k
− 5

6
ln
MPl

M



Possible microscopic origins of this phenomenological model.

1. Follow the purely geometrical approach and consider it as
the specific case of the fourth order gravity in 4D

L =
R

16πG
+ AR2 + BCαβγδC

αβγδ + (small rad. corr.)

for which A� 1, A� |B |. Approximate scale (dilaton)
invariance and absence of ghosts in the curvature regime
A−2 � (RR)/M4

P � B−2.

One-loop quantum-gravitational corrections are small (their
imaginary parts are just the predicted spectra of scalar and
tensor perturbations), non-local and qualitatively have the
same structure modulo logarithmic dependence on curvature.



2. Another, completely different way:

consider the R + R2 model as an approximate description of
GR + a non-minimally coupled scalar field with a large
negative coupling ξ (ξconf = 1

6
) in the gravity sector::

L =
R

16πG
− ξRφ2

2
+

1

2
φ,µφ

,µ − V (φ), ξ < 0, |ξ| � 1 .

Geometrization of the scalar:

for a generic family of solutions during inflation and even for
some period of non-linear scalar field oscillations after it, the
scalar kinetic term can be neglected, so

ξRφ = −V ′(φ) +O(|ξ|−1) .

No conformal transformation, we remain in the the physical
(Jordan) frame!



These solutions are the same as for f (R) gravity with

L =
f (R)

16πG
, f (R) = R − ξRφ2(R)

2
− V (φ(R)).

For V (φ) =
λ(φ2−φ20)2

4
, this just produces

f (R) = 1
16πG

(
R + R2

6M2

)
with M2 = λ/24πξ2G and

φ2 = |ξ|R/λ.

The same theorem is valid for a multi-component scalar field,
as well as for the mixed Higgs-R2 model.



Inflation in the mixed Higgs-R2 Model
M. He, A. A. Starobinsky and J. Yokoyama, JCAP 1805
(2018) 064; arXiv:1804.00409.

L =
1

16πG

(
R +

R2

6M2

)
−ξRφ

2

2
+

1

2
φ,µφ

,µ−λφ
4

4
, ξ < 0, |ξ| � 1

In the attractor regime during inflation (and even for some
period after it), we return to the f (R) = R + R2

6M2 model with

the renormalized scalaron mass M → M̃ :

1

M̃2
=

1

M2
+

24πξ2G

λ

More generally, R2 inflation (with an arbitrary ns , r) serves as
an intermediate dynamical attractor for a large class of
scalar-tensor gravity models.



Inflation in GR

Inflation in GR with a minimally coupled scalar field with some
potential.

In the absence of spatial curvature and other matter:

H2 =
κ2

3

(
φ̇2

2
+ V (φ)

)

Ḣ = −κ
2

2
φ̇2

φ̈ + 3Hφ̇ + V ′(φ) = 0

where κ2 = 8πG (~ = c = 1).



Reduction to the first order equation

It can be reduced to the first order Hamilton-Jacobi-like
equation for H(φ). From the equation for Ḣ , dH

dφ
= −κ2

2
φ̇.

Inserting this into the equation for H2, we get

2

3κ2

(
dH

dφ

)2

= H2 − κ2

3
V (φ)

Time dependence is determined using the relation

t = −κ
2

2

∫ (
dH

dφ

)−1
dφ

However, during oscillations of φ, H(φ) acquires non-analytic
behaviour of the type const +O(|φ− φ1|3/2) at the points
where φ̇ = 0, and then the correct matching with another
solution is needed.



Inflationary slow-roll dynamics

Slow-roll occurs if: |φ̈| � H |φ̇|, φ̇2 � V , and then |Ḣ | � H2.

Necessary conditions: |V ′| � κV , |V ′′| � κ2V . Then

H2 ≈ κ2V

3
, φ̇ ≈ − V ′

3H
, N ≡ ln

af

a
≈ κ2

∫ φ

φf

V

V ′
dφ

First obtained in A. A. Starobinsky, Sov. Astron. Lett. 4, 82
(1978) in the V = m2φ2

2
case and for a bouncing model.



Spectral predictions of the one-field inflationary

scenario in GR
Scalar (adiabatic) perturbations:

Pζ(k) =
H4

k

4π2φ̇2
=

GH4
k

π|Ḣ |k
=

128πG 3V 3
k

3V ′2k

where the index k means that the quantity is taken at the
moment t = tk of the Hubble radius crossing during inflation
for each spatial Fourier mode k = a(tk)H(tk). Through this
relation, the number of e-folds from the end of inflation back
in time N(t) transforms to N(k) = ln kf

k
where

kf = a(tf )H(tf ), tf denotes the end of inflation.
The spectral slope

ns(k)− 1 ≡ d lnPζ(k)

d ln k
=

1

κ2

(
2
V ′′k
Vk
− 3

(
V ′k
Vk

)2
)

is small by modulus – confirmed by observations!



Tensor perturbations (A. A. Starobinsky, JETP Lett. 50, 844
(1979)):

Pg (k) =
16GH2

k

π
; ng (k) ≡ d lnPg (k)

d ln k
= − 1

κ2

(
V ′k
Vk

)2

The consistency relation:

r(k) ≡ Pg

Pζ
=

16|Ḣk |
H2

k

= 8|ng (k)|

Tensor perturbations are always suppressed by at least the
factor ∼ 8/N(k) compared to scalar ones. For the present
Hubble scale, N(kH) = (50− 60). Typically, |ng | ≤ |ns − 1|,
so r ≤ 8(1− ns) ∼ 0.3 – confirmed by observations!



Inverse reconstruction of inflationary models in GR
In the slow-roll approximation:

V 3

V ′2
= CPζ(k(t(φ))), C =

12π2

κ6

Changing variables for φ to N(φ) and integrating, we get:

1

V (N)
= − κ4

12π2

∫
dN

Pζ(N)

κφ =

∫
dN

√
d lnV

dN

Here, N � 1 stands both for ln(kf /k) at the present time
and the number of e-folds back in time from the end of
inflation. First derived in H. M. Hodges and G. R. Blumenthal,
Phys. Rev. D 42, 3329 (1990).

The two-parameter family of isospectral slow-roll inflationary
models, but the second parameter shifts the field φ only.



Minimal ”scale-free” reconstruction
Minimal inflationary model reconstruction avoiding
introduction of any new physical scale both during and after
inflation and producing the best fit to the Planck data.

Assumption: the numerical coincidence between 2/NH ∼ 0.04
and 1− ns is not accidental but happens for all 1� N . 60:
Pζ = P0N

2. Then:

V = V0
N

N + N0
= V0 tanh2 κφ

2
√
N0

r =
8N0

N(N + N0)

r ∼ 0.003 for N0 ∼ 1. From the upper limit on r :

N0 <
0.07N2

8− 0.07N

N0 < 57 for N = 57.



Another example: Pζ = P0N
3/2.

V (φ) = V0
φ2 + 2φφ0

(φ + φ0)2

Not bounded from below (of course, in the region where the
slow-roll approximation is not valid anymore). Crosses zero
linearly.

More generally, the two ”aesthetic” assumptions – ”no-scale”
scalar power spectrum and V ∝ φ2n, n = 1, 2... at the
minimum of the potential – lead to
Pζ = P0N

n+1, ns − 1 = −n+1
N

unambiguously. From this, only
n = 1 is permitted by observations. Still an additional
parameter appears due to tensor power spectrum – no
preferred one-parameter model (if the V (φ) ∝ φ2 model is
excluded).



Inflation in f (R) gravity
The simplest model of modified gravity (= geometrical dark
energy) considered as a phenomenological macroscopic theory
in the fully non-linear regime and non-perturbative regime.

S =
1

16πG

∫
f (R)
√−g d4x + Sm

f (R) = R + F (R), R ≡ Rµ
µ

Here f ′′(R) is not identically zero. Usual matter described by
the action Sm is minimally coupled to gravity.

Vacuum one-loop corrections depending on R only (not on its
derivatives) are assumed to be included into f (R). The
normalization point: at laboratory values of R where the
scalaron mass (see below) ms ≈ const.

Metric variation is assumed everywhere. Palatini variation
leads to a different theory with a different number of degrees
of freedom.



Field equations

1

8πG

(
Rν
µ −

1

2
δνµR

)
= −

(
T ν
µ (vis) + T ν

µ (DM) + T ν
µ (DE)

)
,

where G = G0 = const is the Newton gravitational constant
measured in laboratory and the effective energy-momentum
tensor of DE is

8πGT ν
µ (DE) = F ′(R)Rν

µ−
1

2
F (R)δνµ+

(
∇µ∇ν − δνµ∇γ∇γ

)
F ′(R) .

Because of the need to describe DE, de Sitter solutions in the
absence of matter are of special interest. They are given by
the roots R = RdS of the algebraic equation

Rf ′(R) = 2f (R) .

The special role of f (R) ∝ R2 gravity: admits de Sitter
solutions with any curvature.



Reduction to the first order equation

In the absence of spatial curvature and ρm = 0, it is always
possible to reduce these equations to a first order one using
either the transformation to the Einstein frame and the
Hamilton-Jacobi-like equation for a minimally coupled scalar
field in a spatially flat FLRW metric, or by directly
transforming the 0-0 equation to the equation for R(H):

dR

dH
=

(R − 6H2)f ′(R)− f (R)

H(R − 12H2)f ′′(R)

See, e.g. H. Motohashi amd A. A. Starobinsky, Eur. Phys. J C
77, 538 (2017), but in the special case of the R + R2 gravity
this was found and used already in the original AS (1980)
paper.



Analogues of large-field (chaotic) inflation: F (R) ≈ R2A(R)
for R →∞ with A(R) being a slowly varying function of R ,
namely

|A′(R)| � A(R)

R
, |A′′(R)| � A(R)

R2
.

Analogues of small-field (new) inflation, R ≈ R1:

F ′(R1) =
2F (R1)

R1
, F ′′(R1) ≈ 2F (R1)

R2
1

.

Thus, all inflationary models in f (R) gravity are close to the
simplest one over some range of R .



Perturbation spectra in slow-roll f (R) inflationary

models

Let f (R) = R2 A(R). In the slow-roll approximation
|R̈ | � H |Ṙ |:

Pζ(k) =
κ2Ak

64π2A′2k R
2
k

, Pg (k) =
κ2

12Akπ2

N(k) = −3

2

∫ Rk

Rf

dR
A

A′R2

where the index k means that the quantity is taken at the
moment t = tk of the Hubble radius crossing during inflation
for each spatial Fourier mode k = a(tk)H(tk).



Smooth reconstruction of inflation in f (R) gravity

f (R) = R2 A(R)

A = const − κ2

96π2

∫
dN

Pζ(N)

lnR = const +

∫
dN

√
−2 d lnA

3 dN

Here, the additional assumptions that Pζ ∝ Nβ and that the
resulting f (R) can be analytically continued to the region of
small R without introducing a new scale, and it has the linear
(Einstein) behaviour there, leads to β = 2 and the R + R2

inflationary model with r = 12
N2 = 3(ns − 1)2 unambiguously.



Perspectives of future discoveries

I Primordial gravitational waves from inflation: r .
r . 8(1− ns) ≈ 0.3 (confirmed!) but may be much less.
However, under reasonable assumptions one may expect
that r & (ns − 1)2 ≈ 10−3.

I A more precise measurement of ns − 1 =⇒ duration of
transition from inflation to the radiation dominated stage
=⇒ information on inflaton (scalaron) couplings to known
elementary particles at superhigh energies E . 1013 Gev.

I Local non-smooth features in the scalar power spectrum
at cosmological scales (?).

I Local enhancement of the power spectrum at small scales
leading to a significant amount of primordial black holes
(?).



Small features in the power spectrum

1) A ∼ 10% depression for 20 . ` . 40.
2) An upward wiggle at ` ≈ 40 (the Archeops feature) and a
downward one at ` ≈ 22.
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Local features in an inflaton potential

Some new physics beyond one slow-rolling inflaton may show
itself through these features.

The simplest models with two additional parameters which can
describe such behaviour (to some extent) are based on the
exactly soluble model considered in A. A. Starobinsky, JETP
Lett. 55, 489 (1992): an inflaton potential with a sudden
change of its first derivative.
For comparison of some elaborated class of such models with
the CMB TT data, see
D. K. Hazra, A. Shafieloo, G. F. Smoot and A. A. Starobinsky,
JCAP 1408, 048 (2014).



Recent comparison of the model

V (φ) = θ(φ0 − φ)V1 (1− exp(−ακφ)) +

θ(φ− φ0)V2 (1− exp(−ακ(φ− φ1))

where

V1 (1− exp(−ακφ0)) = V2 (1− exp(−ακ(φ0 − φ1))

with the Planck2015 data on both CMB temperature
anisotropy and E-mode polarization (D. K. Hazra,
A. Shafieloo, G. F. Smoot and A. A. Starobinsky, JCAP 1606,
007 (2016)) provides ∼ 12 improvement in χ2 fit to the data
compared to best-fit models with smooth inflaton potentials,
partly due to the better description of wiggles at both ` ≈ 40
and ` ≈ 22. Possible confusion effects, in particular due to an
extended ionization history, have been recently analyzed in
D. K. Hazra, D. Paoletti, M. Ballardini, F. Finelli,
A. Shafieloo, G. F. Smoot and A. A. Starobinsky, JCAP 1802,
017 (2018); arXiv:1710.01205.



Generality of inflation

Theorem. In inflationary models in GR and f (R) gravity, there
exists an open set of classical solutions with a non-zero
measure in the space of initial conditions at curvatures much
exceeding those during inflation which have a metastable
inflationary stage with a given number of e-folds.

For the GR inflationary model this follows from the generic
late-time asymptotic solution for GR with a cosmological
constant found in A. A. Starobinsky, JETP Lett. 37, 55
(1983). For the R + R2 model, this was proved in
A. A. Starobinsky and H.-J. Schmidt, Class. Quant. Grav. 4,
695 (1987). For the power-law and f (R) = Rp, p < 2,
2− p � 1 inflation – in V. Müller, H.-J. Schmidt and
A. A. Starobinsky, Class. Quant. Grav. 7, 1163 (1990).



Generic late-time asymptote of classical solutions of GR with a
cosmological constant Λ both without and with hydrodynamic
matter (also called the Fefferman-Graham expansion):

ds2 = dt2 − γikdx
idxk

γik = e2H0taik + bik + e−H0tcik + ...

where H2
0 = Λ/3 and the matrices aik , bik , cik are functions of

spatial coordinates. aik contains two independent physical
functions (after 3 spatial rotations and 1 shift in time +
spatial dilatation) and can be made unimodular, in particular.
bik is unambiguously defined through the 3-D Ricci tensor
constructed from aik . cik contains a number of arbitrary
physical functions (two - in the vacuum case, or with
radiation) – tensor hair.

A similar but more complicated construction with an
additional dependence of H0 on spatial coordinates in the case
of f (R) = Rp inflation – scalar hair.



Consequences:

1. (Quasi-) de Sitter hair exist globally and are partially
observable after the end of inflation.

2. The appearance of an inflating patch does not require that
all parts of this patch should be causally connected at the
beginning of inflation.

Similar property in the case of a generic curvature singularity
formed at a spacelike hypersurface in GR and modified gravity.
However, ’generic’ does not mean ’omnipresent’.



What was before inflation?
Different possibilities were considered historicall
1. Creation of inflation ”from nothing” (Grishchuk and
Zeldovich, 1981).
One possibility among infinite number of others.
2. De Sitter ”Genesis”: beginning from the exact contracting
full de Sitter space-time at t → −∞ (AS, 1980).
Requires adding an additional term

R l
i R

k
l −

2

3
RRk

i −
1

2
δk

i RlmR
lm +

1

4
δk

i R
2

to the rhs of the gravitational field equations. Not generic.
May not be the ”ultimate” solution: a quantum system may
not spend an infinite time in an unstable state.
3. Bounce due to a positive spatial curvature (AS, 1978).
Generic, but probability of a bounce is small for a large initial
size of a universe W ∼ 1/Ma0.



Formation of inflation from generic curvature

singularity
In classical gravity (GR or modified f (R)): space-like
curvature singularity is generic. Generic initial conditions near
a curvature singularity in modified gravity models (the R + R2

and Higgs ones): anisotropic and inhomogeneous (though
quasi-homogeneous locally).
Two types singularities with the same structure at t → 0:

ds2 = dt2−
3∑

i=1

|t|2pi a
(i)
l a(i)m dx ldxm, 0 < s ≤ 3/2, u = s(2−s)

where pi < 1, s =
∑

i pi , u =
∑

i p
2
i and a

(i)
l , pi are

functions of r. Here R2 � RαβR
αβ.

Type A. 1 ≤ s ≤ 3/2, R ∝ |t|1−s → +∞
Type B. 0 < s < 1, R → R0 < 0, f ′(R0) = 0
Spatial gradients may become important for some period
before the beginning of inflation.



What is sufficient for beginning of inflation in classical
(modified) gravity, is:
1) the existence of a sufficiently large compact expanding
region of space with the Riemann curvature much exceeding
that during the end of inflation (∼ M2) – realized near a
curvature singularity;
2) the average value < R > over this region positive and
much exceeding ∼ M2, too, – type A singularity;
3) the average spatial curvature over the region is either
negative, or not too positive.

Recent numerical studies confirming this for inflationary
models in GR: W. H. East, M. Kleban, A. Linde and
L. Senatore, JCAP 1609, 010 (2016); M. Kleban and
L. Senatore, JCAP 1610, 022 (2016).

On the other hand, causal connection is certainly needed to
have a ”graceful exit” from inflation, i.e. to have practically
the same amount of the total number of e-folds during
inflation Ntot in some sub-domain of this inflating patch.



Bianchi I type models with inflation in R + R2

gravity
Recent analytical and numerical investigation in D. Muller,
A. Ricciardone, A. A. Starobinsky and A. V. Toporensky, Eur.
Phys. J. C 78, 311 (2018).

For f (R) = R2 even an exact solution can be found.

ds2 = tanh2α

(
3H0t

2

)(
dt2 −

3∑
i=1

a2i (t)dx2i

)

ai (t) = sinh1/3(3H0t) tanhβi

(
3H0t

2

)
,
∑

i

βi = 0,
∑

i

β2
i <

2

3

α2 =
2
3
−∑i β

2
i

6
, α > 0

Nest step: relate arbitrary functions of spatial coordinates in
the generic solution near a curvature singularity to those in the
quasi-de Sitter solution.



Conclusions

I The typical inflationary predictions that |ns − 1| is small
and of the order of N−1H , and that r does not exceed
∼ 8(1− ns) are confirmed. Typical consequences
following without assuming additional small parameters:
H55 ∼ 1014GeV, minfl ∼ 1013GeV.

I Though the Einstein gravity plus a minimally coupled
inflaton remains sufficient for description of inflation with
existing observational data, modified (in particular,
scalar-tensor or f (R)) gravity can do it as well.

I From the scalar power spectrum Pζ(k), it is possible to
reconstruct an inflationary model both in the Einstein and
f (R) gravity up to one arbitrary physical constant of
integration.



I In the Einstein gravity, the simplest inflationary models
permitted by observational data are two-parametric, no
preferred quantitative prediction for r , apart from its
parametric dependence on ns − 1, namely, ∼ (ns − 1)2 or
larger.

I In the f (R) gravity, the simplest model is one-parametric
and has the preferred value r = 12

N2 = 3(ns − 1)2.

I Thus, it has sense to search for primordial GW from
inflation at the level r > 10−3!

I Investigation of small local features in the primordial
power spectrum (bispectrum, etc.) of scalar perturbations
can provide ”tomography” of inflation and may lead to
discovery of other particles or quasiparticles more massive
than inflaton.



I Inflation in f (R) gravity represents a dynamical attractor
for slow-rolling scalar fields strongly coupled to gravity.

I Inflation is generic in the GR and f (R) inflationary
models and close ones. Thus, its beginning does not
require causal connection of all parts of an inflating patch
of space-time (similar to spacelike singularities). However,
graceful exit from inflation requires approximately the
same number of e-folds during it for a sufficiently large
compact set of geodesics. To achieve this, causal
connection inside this set is necessary (though still may
appear insufficient).

I The fact that inflation does not ”solve” the singularity
problem, i.e. it does not remove a curvature singularity
preceding it, can be an advantage, not its weakness.
Inflation can form generically and with not a small
probability from generic space-like curvature singularity.
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