Conformal Extensions of the Standard Model

Manfred Lindner

Look again carefully at the SM as a QFT

- The SM itself (without embedding) is a QFT like QED
 - infinities, renormalization $\leftarrow \rightarrow \delta * \delta \rightarrow$ only differences are calculable
 - SM itself is perfectly OK → many things unexplained...
- Has (like QED) a triviality problem (Landau poles $\leftarrow \rightarrow$ infinite λ)
 - triviality = inconsistency \rightarrow requires some scale Λ where the SM is embedded
 - running U(1) coupling: pole well beyond Planck scale... like in QED
 - running Higgs / top coupling → upper bounds on m_H and m_t
 - \rightarrow the physics at Λ is unknown \rightarrow explicit scale or effective?
- Another potential problem is vacuum instability ($\leftarrow \rightarrow$ negative λ)
 - does occur in SM for large top mass > 79 GeV → lower bounds on m_H

The SM as OFT (without an embedding) works perfectly:

- a hard cutoff Λ and the sensitivity towards Λ has no meaning
- renormalizable, calculable ... just like QED

The naïve Hierarchy Problem

• Loops \rightarrow Higgs mass depends on 'cutoff Λ '

$$\delta M_H^2 = \frac{\Lambda^2}{32\pi^2 V^2} \left(6M_W^2 + 3M_Z^2 + 3M_H^2 - 12M_t^2 \right) \sim \mathcal{O}(\Lambda^2/4\pi^2)$$

 $m_H \le 200$ GeV requires $\Lambda \sim \text{TeV} \rightarrow$ new physics at TeV scale ***OR*** one must explain:

How can m_H be O(100 GeV) if Λ is huge?

SM has not cutoff! $\rightarrow \Lambda$ is embedding scale (form factor, heavy M)

The Neutrino Hierarchy Problem

There are generically two HPs:

- 1) why are scales vastly different
- 2) why do scales remain vastly different under quantum corrections

SM + an extra Higgs – see before

SM + **Dirac neutrinos:** no problem – just like SM

SM + Majorana neutrinos:

- two scales: VEV and the Majorana mass(es) M
 - \rightarrow generates a HP problem for large M even if y_v is tiny

$$\delta m_H^2 \simeq \frac{y_\nu^2}{16\pi^2} M^2$$
 $y_\nu^2 = M m_\nu / v^2$

→
$$M \lesssim 10^7 - 10^8 \text{ GeV}$$

The Problem: Separation of explicit Scales

- Renormalizable QFT with two scalars ϕ , Φ with masses m, M and a hierarchy m << M
- These scalars must interact since φ⁺φ and Φ⁺Φ are singlets
 - $\rightarrow \lambda_{mix}(\phi^+\phi)(\Phi^+\Phi)$ must exist (= portal) in addition to ϕ^4 and Φ^4
- Quantum corrections ~M² drives both masses to the (heavy) scale
 - **→** vastly different scalar scales are generically unstable
- Since SM Higgs exists \rightarrow problem: embedding with a 2nd scalar
 - gauge extensions → must be broken...
 - GUTs → must be broken
 - even for SUSY GUTS → doublet-triplet splitting...
 - also for fashinable Higgs-portal scenarios...

Options:

- no 2^{nd} Higgs \rightarrow just the SM \rightarrow triviality \rightarrow requires a new scale...
- symmetry: SUSY, ... > conformal symmetry

The main Idea

- Do not introduce two or more fundamental scales
- Instead: No fundamental scale
 - **theories with conformal or shift symmetry**
- Dynamical breaking of $CS \rightarrow scale(s)$
- Non-linear realization of CS:
 - \rightarrow naïve power counting ($\sim \Lambda^2$) misleading
 - **→** similar to gauge symmetry and vector boson masses

Anything pointing in that direction?

Is the Higgs Potential at M_{Planck} flat?

Holthausen, ML, Lim (2011) Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia

Experimental values point to metastability. Is it fully established?

- → we need to include DM, neutrino masses, ...? are all errors (EX+TH) fully included?
- → be cautious about claiming that metastability is established
- → May be a very important observation:
- remarkable relation between weak scale, mt, couplings and MPlanck \rightarrow precision
- remarkable interplay between gauge, Higgs and top loops (log divergences not Λ^2)

Is there a Message?

- $\lambda(M_{Planck}) \simeq 0$? \rightarrow remarkable log cancellations M_{planck} , M_{weak} , gauge, Higgs & Yukawa couplings are unrelated
- remember: μ is the only single scale of the SM \Rightarrow special role
 - \rightarrow if in addition $\mu^2 = 0 \rightarrow V(M_{Planck}) \sim 0$
 - → flat Mexican hat (<1%) at the Planck scale!

- → conformal (or shift) symmetry as solution to the HP
- → combined conformal & EW symmetry breaking
 - conceptual issues
 - realizations

Generic Questions

- Isn't the Planck-scale spoiling things (explicit scale, cut-off, ...)?
 - → renormalizable QFTs (SM) don't have cut-offs
 - explicit scales in embeddings act like a cut-off
 - important: no cutoff if the emebedding has no explicit scale
 - → non-linear realization of conformal symmetry... → ~conformal gravity...
 - > protected by conformal symmetry up to conformal anomaly
 - → some mechanism that generates MPlanck by dimensional transmutation
 - working assumption: MPlanck somehow generated in a conformal setting
- Are M_{planck} and M_{weak} connected?
 - → maybe ...
 - → here assumed to be independently generated scales
- UV: ultimate solution should be asymptotically safe → UV-FPs...
- Conceptual change for scale setting: So far a rollover of scale generation: SM → BSM → GUT → gravity (MPlanck) Here: only relative scales – absolute scale is meaningless

Non-linear Realization of Conformal Symmetry

Non-linear realization of conformal symmetry:

- → protection by conformal symmetry
- → naïve power counting invalid
- → similar to vector boson masses
- only log sensitivity
 - **←→** conformal anomaly
 - $\leftarrow \rightarrow \beta$ -functions
- Avoids hierarchy problem, even though there is the the conformal anomaly only logs $\leftarrow \rightarrow \beta$ -functions
- Dimensional transmutation of conformal theories by log running like in QCD
 - → scalar QCD: scalars can condense and set scales like fermions
 - → also for massless scalar QCD: scale generation; no hierarchy

Why the minimalistic SM does not work

- This would conceptually realize the idea, but:
 Higgs too light and the idea does not work for m_t > 79 GeV
- DSB for weak coupling $\leftarrow \rightarrow$ CS= phase boundary

Realizing the Idea via Higgs Portals

- SM scalar Φ plus some new scalar φ (or more scalars)
- $CS \rightarrow$ no scalar mass terms
- the scalar portal $\lambda_{mix}(\varphi^+\varphi)(\Phi^+\Phi)$ must exist
 - \Rightarrow a condensate of $\langle \phi^+ \phi \rangle$ produces $\lambda_{mix} \langle \phi^+ \phi \rangle (\Phi^+ \Phi) = \mu^2 (\Phi^+ \Phi)$
 - \rightarrow effective mass term for Φ
- CS anomalous ... \rightarrow breaking \rightarrow only $\ln(\Lambda)$
 - \rightarrow implies a TeV-ish condensate for φ to obtain $\langle \Phi \rangle = 246$ GeV
- Model building possibilities / phenomenological aspects:
 - φ could be an effective field of some hidden sector DSB
 - further particles could exist in hidden sector; e.g. confining...
 - extra hidden U(1) potentially problematic $\leftarrow \rightarrow$ U(1) mixing
 - avoid Yukawas which couple visible and hidden sector
 - → phenomenology safe due to Higgs portal, but there is TeV-ish new physics!

Rather minimalistic: SM + QCD Scalar S

J. Kubo, K.S. Lim, ML New scalar representation $S \rightarrow QCD$ gap equation:

$$C_2(S) lpha(\Lambda) \gtrsim X$$

 $C_2(\Lambda)$ increases with larger representations

 $\leftarrow \rightarrow$ condensation for smaller values of running α

Phenomenology

S pair production cross section from gluon fusion (assumed: 100% BR into two jets)

Realizing this Idea: Left-Right Extension

M. Holthausen, ML, M. Schmidt

Radiative SB in conformal LR-extension of SM

(use isomorphism $SU(2) \times SU(2)$ \longrightarrow representations)

particle	parity \mathcal{P}	\mathbb{Z}_4	$\operatorname{Spin}(1,3) \times (\operatorname{SU}(2)_L \times \operatorname{SU}(2)_R) \times (\operatorname{SU}(3)_C \times \operatorname{U}(1)_{B-L})$
$\mathbb{L}_{1,2,3} = \left(egin{array}{c} L_L \ -\mathrm{i} L_R \end{array} ight)$	$P\mathbb{PL}(t,-x)$	$L_R o \mathrm{i} L_R$	$\left[\left(\frac{1}{2},\underline{0}\right)(\underline{2},\underline{1}) + \left(\underline{0},\frac{1}{2}\right)(\underline{1},\underline{2})\right](\underline{1},-1)$
$\mathbb{Q}_{1,2,3}=\left(egin{array}{c}Q_L\ -\mathrm{i}Q_R\end{array} ight)$	$P\mathbb{PQ}(t,-x)$	$Q_R ightarrow -\mathrm{i} Q_R$	$\left[\left(\underline{\frac{1}{2}},\underline{0}\right)(\underline{2},\underline{1}) + \left(\underline{0},\underline{\frac{1}{2}}\right)(\underline{1},\underline{2})\right]\left(\underline{3},\frac{1}{3}\right)$
$\Phi = \left(egin{array}{cc} 0 & \Phi \ - ilde{\Phi}^\dagger & 0 \end{array} ight)$	$\mathbb{P}^{\Phi^{\dagger}}\mathbb{P}(t,-x)$	$\Phi \to i\Phi$	$(\underline{0},\underline{0})\ (\underline{2},\underline{2})\ (\underline{1},0)$
$\Psi = \left(egin{array}{c} \chi_L \ -\mathrm{i}\chi_R \end{array} ight)$	$\mathbb{P}\Psi(t,-x)$	$\chi_R \to -\mathrm{i}\chi_R$	$(\underline{0},\underline{0})\left[(\underline{2},\underline{1})+(\underline{1},\underline{2})\right](\underline{1},-1)$

- → the usual fermions, one bi-doublet, two doublets
- \rightarrow a \mathbb{Z}_4 symmetry
- → no scalar mass terms ←→ CS

→ Most general gauge and scale invariant potential respecting Z4

$$\begin{split} \mathcal{V}(\Phi, \Psi) &= \frac{\kappa_1}{2} \left(\overline{\Psi} \Psi \right)^2 + \frac{\kappa_2}{2} \left(\overline{\Psi} \Gamma \Psi \right)^2 + \lambda_1 \left(\mathrm{tr} \Phi^\dagger \Phi \right)^2 + \lambda_2 \left(\mathrm{tr} \Phi \Phi + \mathrm{tr} \Phi^\dagger \Phi^\dagger \right)^2 + \lambda_3 \left(\mathrm{tr} \Phi \Phi - \mathrm{tr} \Phi^\dagger \Phi^\dagger \right)^2 \\ &+ \beta_1 \, \overline{\Psi} \Psi \mathrm{tr} \Phi^\dagger \Phi + f_1 \, \overline{\Psi} \Gamma [\Phi^\dagger, \Phi] \Psi \; , \end{split}$$

- → calculate V_{eff}
- → Gildner-Weinberg formalism (RG improvement of flat directions)
 - anomaly breaks CS
 - spontaneous breaking of parity, \mathbb{Z}_4 , LR and EW symmetry
 - m_H << v ; typically suppressed by 1-2 orders of magnitude Reason: $V_{\rm eff}$ flat around minimum
 - ←→ $m_H \sim loop factor \sim 1/16\pi^2$
 - → generic feature → predictions
 - everything works nicely...

→ requires moderate parameter adjustment for the separation of the LR and EW scale... PGB...?

SM & hidden SU(3)_H Gauge Sector

Holthausen, Kubo, Lim, ML

• hidden SU(3)_H:

$$\mathcal{L}_{H} = -\frac{1}{2} \operatorname{Tr} F^{2} + \operatorname{Tr} \bar{\psi} (i\gamma^{\mu} D_{\mu} - yS) \psi$$

gauge fields; $\psi = 3_H$ with $SU(3)_F$; S = real singlet scalar

• SM coupled by S via a Higgs portal:

$$V_{\text{SM}+S} = \lambda_H (H^{\dagger}H)^2 + \frac{1}{4}\lambda_S S^4 - \frac{1}{2}\lambda_{HS} S^2 (H^{\dagger}H)$$

- no scalar mass terms
- use similarity to QCD, use NJL approximation, ...
- χ-ral symmetry breaking in hidden sector:

 $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V \rightarrow generation of TeV scale$

- → transferred into the SM sector through the singlet S
- → dark pions are PGBs: naturally stable → DM

Realizing the Idea: Specific Realizations

SM + extra singlet: Φ, φ

Nicolai, Meissner, Farzinnia, He, Ren, Foot, Kobakhidze, Volkas, ...

SM \otimes SU(N)_H with new N-plet in a hidden sector

Ko, Carone, Ramos, Holthausen, Kubo, Lim, ML, Hambye, Strumia, ...

SM embedded into larger symmetry (CW-type LR)

Holthausen, ML, M. Schmidt

SM + QCD colored scalar which condenses at TeV scale Kubo, Lim, ML

SM \otimes [SU(2)_X \otimes U(1)_X]

Altmannshofer, Bardeen, Bauer, Carena, Lykken

Since the SM-only version does not work \rightarrow observable effects:

- Higgs coupling to other scalars (singlet, hidden sector, ...)
- dark matter candidates ←→ hidden sectors & Higgs portals
- consequences for neutrino masses

Conformal Symmetry & Neutrino Masses

ML, S. Schmidt and J. Smirnov

- No explicit scale → no explicit (Dirac or Majorana) mass term
 → only Yukawa couplings ⊗ generic scales
- Enlarge the Standard Model field spectrum like in 0706.1829 R. Foot, A. Kobakhidze, K.L. McDonald, R. Volkas
- Consider direct product groups: SM ⊗ HS
- Two scales: CS breaking scale at O(TeV) + induced EW scale

Important consequence for fermion mass terms:

- → spectrum of Yukawa couplings ⊗ TeV or EW scale
- **→** interesting consequences ← → Majorana mass terms are no longer expected at the generic L-breaking scale → anywhere

Examples

$$\mathcal{M} = \begin{pmatrix} 0 & y_D \langle H \rangle \\ y_D^T \langle H \rangle & y_M \langle \phi \rangle \end{pmatrix}$$

Yukawa seesaw:

$$ext{SM} + ext{$
u_{
m R}$} + ext{singlet} \ \langle \phi
angle pprox {
m TeV} \ \langle H
angle pprox 1/4 {
m TeV} \
angle$$

- **→** generically expect a TeV seesaw
- BUT: y_M can be tiny
- → wide range of sterile masses → including pseudo-Dirac case
- → suppressed 0vββ

Radiative masses

The punch line: all usual neutrino mass terms can be generated

- → suitable scalars
- → no explicit masses all via Yukawa couplings
- → different numerical expectations

Another Example: Inverse Seesaw

 $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X$

Humbert, ML, J. Smirnov

	H	ϕ_1	ϕ_2	L	ν_R	N_R	N_L
$U(1)_X$		1	2	0	0	1	1
Lepton Number	0	0	0	1	1	0	0
$U(1)_Y$ $SU(2)_L$		0	0	-1	0	0	0
		1	1	2	1	1	1

$$\mathcal{M} = \begin{pmatrix} 0 & y_D \langle H \rangle & 0 & 0 \\ y_D \langle H \rangle & 0 & y_1 \langle \phi_1 \rangle & \tilde{y}_1 \langle \phi_1 \rangle \\ 0 & y_1 \langle \phi_1 \rangle & y_2 \langle \phi_2 \rangle & 0 \\ 0 & \tilde{y}_1 \langle \phi_1 \rangle & 0 & \tilde{y}_2 \langle \phi_2 \rangle \end{pmatrix}$$

- → light eV "active" neutrino(s)
- → two pseudo-Dirac neutrinos; m~TeV
- \rightarrow sterile state with $\mu \approx keV$
- → tiny non-unitarty of PMNS matrix
- tiny lepton universality violation
- →suppressed 0νββ decay ←!
- → lepton flavour violation
- tri-lepton production could show up at the LHC
- → keV neutrinos as warm dark matter →

More flexible Neutrino Mass Spectra

Usually:

 M_L tiny or 0, M_R heavy → see-saw & variants light sterile: F-symmetries...

Now:

M_L, M_R may have any value:

- → diagonalization: 3+N EV
- **→** 3x3 active almost unitary

$$M_L=0$$
, $m_D=M_W$, $M_R=high$: see-saw

$$\mathbf{M}_{L} = \mathbf{M}_{R} = \mathbf{0}$$
 $\mathbf{M}_{L} = \mathbf{M}_{R} = \boldsymbol{\epsilon}$ Dirac pseudo Dirac

$$M_L = M_R = \varepsilon$$
 pseudo Dirac

Conformal Symmetry & Dark Matter

Different natural and viable options:

- 1) A keV sterile neutrino is in all cases easily possible
- 2) New particles which are fundamental or composite DM candidates:
 - hidden sector pseudo-Goldstone-bosons
 - stable color neutral bound states from new QCD representations
- → some look like WIMPs
- → others are extremely weakly coupled (via Higgs portal)
- → or even coupled to QCD (threshold suppressed...)

Summary

- > SM works (so far) perfectly
 - be a bit more patient: new physics around the corner...
 - maybe it is time to re-consider some things...
- The old hierarchy problem...? No new physics observed $\lambda(M_{Planck}) = 0$? $\leftarrow \Rightarrow$ precise value for $m_t \Rightarrow$ is there a message?
- → Embedings into QFTs with conformal symmetry
 - → combined conformal & electro-weak symmetry breaking
 - → implications for BSM phenomenology
 - → implications for Higgs couplings, dark matter, ...
 - → implications for neutrino masses
- → testable consequences: @LHC, dark matter, neutrinos