Spacetime and dark matter from spontaneous breaking of Lorentz symmetry

Tom Zlośnik¹, Federico Urban¹, Luca Marzola² and Tomi Knivisto³⁵

¹ Institute of Physics of the Czech Academy of Science,

Na Slovance 19992, 182 21, Prague

² KBFI, Akadeemia Tec 23, Tallinn, Estonia

³ NORDITA, Roalegstallsbacken 32,

³ 109 Stockhum, Sweden

PACTS 2018:

Particle, Astroparticle and Cosmology Tallinn Symposium

Principles

"...the <u>Standard Model</u> has been "ruled in" because it was based on **principles**, in particular the *gauge* principle and *renormalisability*..."

Prof. Hassan, @PACTS 2018, June 18, Tallinn

We'd like to build the theory of gravity on these principles. Thus we'll adopt *Cartan's gauge geometry* and will write down only *polynomial* actions.

Cartan geometry

 The idea: a distance can be measured by monitoring how much a wheel has rotated when rolled without slipping.

- The maths: generalise the tangent space \mathbb{R}^n by G/H
 - Transitive action of the Lie group G
 - Stabiliser $H = \{g \in G | gx = x\}$ given $x \in G/H$
- Example: the SO(1,4)/SO(1,3)

Gravity with more or less variables

We'll gauge the SO(3,1) and break it. We'll need

- ullet the spin connection ω^{IJ}
- ullet the symmetry-breaking field au'

The standard approach assumes also the vierbein e^{I}

In e.g. Poincaré gauge theory, MAG, TEGR, etc., the relation of the vierbein and the translational gauge potential θ is

$$\theta' = e' - D\tau'.$$

The τ^I is known as e.g. "the generalised Higgs field", the "Poincaré coordinates", the "Cartan's generalised radius vector" etc but is (almost) always hidden in the gauge $D\tau^I=0$ or $\tau^I=0$.

The action

$S_G[\omega, au] = \int \mathcal{L}_G = \int P_{IJKL} D au^I D au^J R^{KL}$

- Products: with the \wedge e.g. $D\tau^I D\tau^J \equiv D\tau^I \wedge D\tau^J = D_\mu \tau^I D_\nu \tau^J dx^\mu \wedge dx^\nu$
- The projector $P_{\mathit{IJKL}} \equiv \frac{1}{2} \left(\frac{1}{2} \epsilon_{\mathit{IJKL}} + \frac{1}{\gamma} \eta_{\mathit{IK}} \eta_{\mathit{JL}} \right)$
 - $oldsymbol{\epsilon}_{\mathit{IJKL}}$ is the completely antisymmetric SO(3,1) invariant
 - η_{IJ} is the symmetric SO(3,1) invariant
 - $\bullet \ \gamma$ is the Barbero-Immirzi -parameter
- The curvature $R^{IJ}=rac{1}{2}R^{IJ}_{\mu\nu}dx^{\mu}\wedge dx^{\nu}$
 - components: $R^{I}_{J\alpha\beta} \equiv 2\partial_{[\alpha|}\omega^{I}_{J|\beta]} + 2\omega^{I}_{K[\alpha|}\omega^{K}_{J|\beta]}$
- The gradient: $D\tau' = D_{\mu}\tau' dx^{\mu}$
 - components: $D_{\mu}\tau^{I} \equiv \partial_{\mu}\tau^{I} + \omega^{I}_{J\mu}\tau^{J}$

Equations of motion

The action

$$S_{G}[\omega, \tau] = \int \mathcal{L}_{G} = P_{IJKL} \int D\tau^{I} D\tau^{J} R^{KL}$$
$$= \frac{1}{2} \int \left(\frac{1}{2} \tau^{2} \epsilon_{IJKL} - \frac{1}{\gamma} \tau_{I} \tau_{K} \eta_{JL} \right) R^{IJ} R^{KL}$$

The connection EoM

$$P_{IJIM}R^{\prime}_{N}\tau^{N}D\tau^{J} - \tau_{II}P_{MIJK}D\tau^{\prime}R^{JK} = 0$$

The scalar EoM

$$P_{IJKL}R^{J}_{M}\tau^{M}R^{KL}=0$$

Summary of the theory

Variables: ω^{IJ} and τ^{I}

Now the "vierbein" is $D\tau^I$, and the "torsion" is $DD\tau^I = R^I{}_J\tau^J$.

Field equations from the action $S_G[\omega, au] = \int P_{IJKL} D au^I D au^J R^{KL}$

Now the δ_{ω} gives field equation, and the δ_{τ} a Bianchi identity.

Symmetric solution

We immediately obtain an exact solution: $\tau^I = 0$, $\Omega^{IJ} =$ anything.

Solutions with spacetime

When $D\tau^I \neq 0$, we'll obtain a nonzero $g_{\mu\nu} = D_{\mu}\tau^I D_{\nu}\tau_I$.

Gauge fixing

• A partial gauge fixing:

$$\bar{\mathcal{D}}_a \tau^0 = \bar{d}\tau^0 + \bar{\omega}^{0i}\tau_i \stackrel{*}{=} 0$$

where i, j, k are in $SO(3) \in SO(3, 1)$.

• Assume a time-like norm:

$$-\tau^2 \equiv \tau' \tau_I < 0$$

This breaks SO(3,1) down to a residual SO(3) invariance.

The spatial triad appears within the connection

$$D\tau^0 = d\tau$$
, $D\tau^i = \omega^i{}_0\tau^0 \equiv E^i$.

Connection

The pullback $\bar{\omega}^{II}$ of ω^{II} to surface Σ of constant τ :

$$ar{\omega}^{IJ} \stackrel{*}{=} \left(egin{array}{cc} 0 & rac{1}{ au}E^i \ -rac{1}{ au}E^i & \epsilon^{ijk} igg(\Gamma_k - rac{1}{\gamma} \left(K_k - rac{1}{ au}E_k
ight) igg) \end{array}
ight)$$

- $e^{ijk}\Gamma_k$ is the torsion-free E^i -compatible SO(3)-connection
- K_i is the extrinsic curvature form
- Set spatial coordinates x^a on Σ , define $h_{ab} = \delta_{ij} E_a^i E_b^j$:
 - $K_{ab} \equiv {1\over 2} {\cal L}_{(n^\mu)} h_{ab}$ where n^μ is the unit normal to Σ
 - Relation to the to the curvature form $K_i = K_{ab}E_i^b dx^a$
- The metric part of $\bar{\omega}^{0i}$ describes distances on Σ
- The metric part of $\bar{\omega}^{ij}$ related to the intrinsic curvature
- ullet The torsionful part of $ar{\omega}^{ij}$ related to the extrinsic curvature

GR recovered only when $\gamma^2 = -1$

With a general value of γ , the equations of motion for the spatial metric h_{ab} are produced from the following Lagrangian

$$L = \sqrt{h} \left(R^{(3)} + rac{1}{\gamma^2} \left(K^2 - K^{ab} K_{ab} \right) \right)$$

- This is valid in the frame $t = \tau$
- $R^{(3)}$ is the Ricci scalar corresponding to h_{ab}
- K_{ab} is the extrinsic curvature

Iff $\gamma^2 = -1$ we recover the ADM Lagrangian with unit lapse.

Different from LQG

where the Barbero-Immirzi parameter is not fixed.

The self-dual curvature

- Any SO(3,1)-form can be decomposed as $f^{IJ} = f^{+IJ} + f^{-IJ}$
 - $f^{+IJ} = \frac{1}{2} (f^{IJ} \frac{i}{2} \epsilon^{IJ}_{KL} f^{KL})$ • $f^{-IJ} = \frac{1}{2} (f^{IJ} + \frac{i}{2} \epsilon^{IJ}_{KL} f^{KL})$
- These are the self-dual and anti-self-dual pieces
 - $\frac{1}{2}\epsilon^{IJ}_{KL}f^{+KL} = if^{+IJ}$ • $\frac{1}{2}\epsilon^{IJ}_{KI}f^{-KL} = -if^{-IJ}$
- When $\gamma = \pm i$, the P_{UKL} is the projector
 - $\gamma = i$: $P_{\kappa_l}^{U} f^{\kappa L} = \frac{1}{2} \epsilon_{\kappa_l}^{U} f^{+\kappa L}$
 - $\gamma = -i$: $P_{\kappa L}^{NL} f^{\kappa L} = \frac{1}{2} \epsilon_{\kappa L}^{NL} f^{-\kappa L}$

If $\gamma = i$, the action involves the self-dual curvature

$$S_G[\omega, \tau] = P_{IJKL} \int D\tau^I D\tau^J R^{KL} = \frac{1}{2} \epsilon_{IJKL} \int D\tau^I D\tau^J R^{+KL}$$

Self-dual connection

The pullback $\bar{\omega}^{IJ}$ of ω^{IJ} to surface Σ of constant τ :

$$\bar{\omega}^{IJ} \stackrel{*}{=} \left(\begin{array}{cc} 0 & \frac{1}{\tau} E^{i} \\ -\frac{1}{\tau} E^{i} & \epsilon^{ijk} \left(\Gamma_{k} - i \left(K_{k} - \frac{1}{\tau} E_{k} \right) \right) \end{array} \right)$$

$$\omega^{\pm IJ} = \frac{1}{2} \left(\begin{array}{cc} 0 & \pm i \left(\Gamma^i - i K^i \right) + (1 \mp 1) \frac{E^i}{\tau} \\ \mp i \left(\Gamma^i - i K^i \right) - (1 \mp 1) \frac{E^i}{\tau} & \epsilon^{ijk} \left(\Gamma_k - i K_k \right) + i (1 \mp 1) \epsilon^{ijk} \frac{E_k}{\tau} \end{array} \right)$$

Compare with the ECSK theory:

$$\bar{\omega}_{(ECSK)}^{IJ} \stackrel{*}{=} \left(\begin{smallmatrix} 0 & \kappa^{i} \\ -\kappa^{i} & \epsilon^{ijk} \Gamma_{k} \end{smallmatrix} \right), \quad \bar{e}_{(ECSK)}^{I} \stackrel{*}{=} \left(\begin{smallmatrix} 0 \\ E^{i} \end{smallmatrix} \right) \tag{1}$$

$$\omega^{+IJ} = \frac{1}{2} \begin{pmatrix} 0 & i \left(\Gamma^{i} - iK^{i} \right) \\ -i \left(\Gamma^{i} - iK^{i} \right) & \epsilon^{ijk} \left(\Gamma_{k} - iK_{k} \right) \end{pmatrix} = \omega_{(ECSK)}^{+IJ}$$
 (2)

1 + 3

- Assume topology $R \times \Sigma$ for some submanifold Σ
- Σ corresponds t = cst. where $t(x^{\mu})$ is a global time function
 - Introduce spatial coordinates x^a covering Σ
 - Introduce \bar{d} the exterior derivative according to the x^a
- Decompose the fields and their exterior derivatives as:

$$\begin{split} \omega^{IJ} &= \omega^{IJ} dt + \bar{\omega}^{IJ} \\ d\tau^{I} &= \partial_{t} \tau^{I} dt + \bar{d} \tau^{I} \\ d\omega^{IJ} &= \partial_{t} \bar{\omega}^{IJ}_{a} dt dx^{a} + \bar{d} \omega^{IJ} dt + \bar{d} \bar{\omega}^{IJ} \end{split}$$

$$\begin{split} \mathcal{L}_{\textit{G}} &\stackrel{\textit{b}}{=} \textit{P}_{\textit{\tiny LJKL}} \textit{dt} \left(2 \bar{\mathcal{D}} \tau^{\textit{J}} \bar{R}^{\textit{\tiny KL}} \partial_{t} \tau^{\textit{I}} + \bar{\mathcal{D}} \tau^{\textit{I}} \bar{\mathcal{D}} \tau^{\textit{J}} \partial_{t} \bar{\omega}^{\textit{\tiny KL}}_{\;\; a} \textit{dx}^{a} \right) \\ &+ \textit{P}_{\textit{\tiny LJKL}} \textit{dt} \left(2 \Omega^{\textit{\tiny IM}} \tau_{\textit{M}} \bar{\mathcal{D}} \tau^{\textit{J}} \bar{R}^{\textit{\tiny KL}} + \Omega^{\textit{\tiny KL}} \bar{\mathcal{D}} \left(\bar{\mathcal{D}} \tau^{\textit{I}} \bar{\mathcal{D}} \tau^{\textit{J}} \right) \right) \end{split}$$

The 1+3 Lagrangian

• Introduce the momenta for τ^0 and τ^i :

$$\pi_0 \equiv 2P_{0j\kappa L}E^j \bar{R}^{\kappa L}$$
 $\pi_i \equiv 2P_{ij\kappa L}E^j \bar{R}^{\kappa L}$

• Force them with multipliers, vary wrt them and obtain:

$$\pi_0 \tau_i - \pi_i \tau_0 = 0$$
$$\pi_{[i} \tau_{i]} = 0$$

• Use these and obtain:

$$\begin{split} \mathcal{L}_{G} & \stackrel{b}{=} \frac{1}{2} dt \epsilon_{ij\kappa\iota} E^{i} E^{j} \partial_{t} \bar{\omega}^{+\kappa\iota}_{a} dx^{a} + \pi_{0} \frac{\tau}{\tau_{0}} d\tau \\ & + dt \Omega^{0i+} \epsilon_{0ijk} \bar{\mathcal{D}}^{+} \left(E^{j} E^{k} \right) + P_{i} \left(E^{i} - \bar{\mathcal{D}} \tau^{i} \right) \\ & + \lambda \left(\pi_{0} - 2 P_{0j\kappa\iota} E^{j} \bar{R}^{\kappa\iota} \right) + \lambda^{i} \left(\pi_{i} - 2 P_{ij\kappa\iota} E^{j} \bar{R}^{\kappa\iota} \right) \end{split}$$

The Hamiltonian

Renaming things:

- Introduce \mathcal{P} via $\pi_0 = (\tau_0/\tau)\mathcal{P}$
- Introduce N via $\lambda = Ndt$
- Introduce N^i via $\lambda^i = N^i dt$
- Use τ instead of $\tau^0 = \sqrt{\tau^2 + \tau^i \tau_i}$

The result becomes:

$$S_G \stackrel{b}{=} \int dt \left(\epsilon_{ijk} E^i E^j \partial_t \bar{\omega}^{+0k}_{\ a} dx^a + \mathcal{P} \partial_t \tau - \mathcal{H} \right)$$

where the Hamiltonian three-form ${\cal H}$ is:

$$\mathcal{H} = \Omega^{i0+} \epsilon_{ijk} \bar{\mathcal{D}}^+ (E^j E^k) + \mathcal{N} (\mathcal{P} \sqrt{1 + \partial^a \tau \partial_a \tau} + \epsilon_{ijk} E^i \bar{R}^{+jk}) + \mathcal{N}^i (\mathcal{P} \partial_i \tau + 2\epsilon_{ijk} E^j \bar{R}^{+0k}).$$

Covariant Ashtekar's self-dual gravity coupled to rotationless dust.

Summary of the analysis

The symmetry-broken phase

The spatial triad appears in the connection: $D\tau^0=d\tau$, $D\tau^i=E^i$.

The action is completely fixed: $S_G[\omega, \tau] = i \int \epsilon_{IJKL} D \tau^I D \tau^J R^{+KL}$

We need to consider a complex Lorentz group $SO(3, 1, \mathbb{C})$.

The result:

Covariant Ashtekar's self-dual gravity coupled to rotationless dust.

The matter coupling:

Chiral $S_S[\omega, \tau] = i \int \epsilon_{IJKL} D\tau^I D\tau^J D\tau^K \Psi_{A'}^* \sigma^{LA'A} D^+ \Psi_A$ is consistent.

Dark matter

The solutions to the EoMs from $S_G[\omega, au]$ include those from

$$S_G'[g, au,
ho] = rac{1}{2}\int\sqrt{-g}d^4xigg(R-
ho(\partial^\mu au\partial_\mu au+1)igg)$$

So does

- "Mimetic dark matter" (the minimal version)
- "Projectable Horava-Lifshitz gravity" (without a kinetic term)

Caustics?

There is no necessity that τ forms a global time coordinate. It is sufficient that the theory leads to field equations that can be evolved in physical situations of interest. The ability of τ to "tilt" from timelike to null values may be of importance in terms of its ability to evolve past "caustic" situations.

Singularities

A problem with mimetics:

With the shift symmetry $au o au + \mathrm{cst.}$, inflation dilutes the ho_{DM} .

A possible solution: break the symmetry

We could add kinetic terms to $\boldsymbol{\tau},$ or non-minimal matter couplings.

A more interesting possibility: reconsider the Big Bang & inflation

Recall the trivial solution $\tau^I=0$, $\omega^{IJ}=$ anything. Can we (more/less smoothly) join this with the expanding dust solution?

Extensions

Enlarging the gauge group

- Double relativism $SO(3,1) \rightarrow SO(4,1)$: invariance of both c and M_{Planck}
- Conformalism $SO(4,1) \rightarrow SO(4,2)$: rid of absolute scales
- et cetera $SO(4,2) \rightarrow SO(N,14-N)$: towards GraviGUTs ála Percacci

Changing the gauge group

- Unitary geometry: $SO(4) \simeq SU(2) \otimes SU(2)$
- Hermitian geometry: $SO(3,1) \simeq SL(2,\mathbb{C})$
- Spinorial Khronon: $\tau' = \bar{\Psi} \gamma' \Psi$

Modifying gravity: a universal recipe

An example: vector

- Take e^a and a vector V^a
- Write down the polynomials (many are redundant)
- lacktriangle Obtain: the Horndeski when $V_{\mu}=\partial_{\mu}\phi$
- If $e^a = D\tau^a$ we'll get "mimetic Horndeski"?

$$\begin{split} L &= a_{abcd}R^{ab}R^{cd} + b_{abc}R^{ab}T^c + c_{ab}T^aT^b \\ &+ d_{abcd}R^{ab}e^c e^d + d^u_{abcd}R^{ab}DV^cDV^d \\ &+ e_{abc}T^a e^b e^c + e^u_{abc}T^aDV^bDV^c \\ &+ d^d_{abcd}R^{ab}e^cDV^d + e^d_{abc}T^a e^bDV^c \\ &+ d^d_{abcd}e^a e^b e^c e^d + f^d_{abcd}e^a e^b e^cDV^d \\ &+ f^d_{abcd}e^a e^bDV^cDV^d + f^{mbcd}_{abcd}e^a DV^bDV^cDV^d \\ &+ f^d_{abcd}D^aDV^bDV^cDV^d \end{split}$$

- Example with 2-form ⇒ the "generalised Proca" terms
- Example with two tetrads: bigravity (next talk)
 - The potential interactions: $\epsilon_{abcd}e^ae^be^cf^d$, $\epsilon_{abcd}e^ae^bf^cf^d$, $\epsilon_{abcd}e^af^bf^cf^d$
 - New kinetic interactions? Mimetic bigravity? Chiral bigravity?

The universal recipe

to obtain *all* the consistent actions with *any* field content: covariant, generalised (with torsion) and *complete*. [ArXiv:1807.xxx].

Summary: "the Cartan Khronon"

• Principle: a 1) minimal 2) polynomial 3) gauge theory

The theory $S_G[\omega, \tau] = i \int \epsilon_{IJKL} D\tau^I D\tau^J R^{+KL}$ is chiral GR + dust

Spacetime and dark matter from spontaneous breaking of Lorentz symmetry

Tom Zlošnik¹, Federico Urban¹, Luca Marzola², and Tomi Koivisto³s.

¹ Institute of Prosisc of the Ceech Academy of Sciences,
Na Slowance 1999/2, 182 21, Prague

² KBFI, Akadeemia Tee 23, Tallim, Estonia

³ NORDITA, Rosdagstullsbacken 23,
106 91 Stockholm. Sucken 23,

- Next
 - Resolution of singularities?
 - Complete model of the universe?
- Then
 - Unification?
 - Quantisation?