Spacetime and dark matter from spontaneous breaking of Lorentz symmetry

```
Tom Złośnik }\mp@subsup{}{}{1},\mp@subsup{}{}{\prime}\mathrm{ Federico Urban }\mp@subsup{}{}{1},\mp@subsup{}{}{\dagger}\mathrm{ Luca Marzola}\mp@subsup{}{}{2},\ddagger\mathrm{ and Tomi Koivisto }\mp@subsup{}{}{3\S
```

 \({ }^{1}\) Institute of Physics of the Czech Acadeny of Sciences,
 Na Slovance 1999/2, 182 21, Prague
 ${ }^{2}$ KBFI, Akadeemia Tee 23, Tallinn, Estonia
${ }^{3}$ NORDITA, Roslagstullsbacken 23,
10691 Stockholm, Sweden

Nordita - the Nordic Institute for Theoretical Physics
PACTS 2018:
Particle, Astroparticle and Cosmology Tallinn Symposium KBFI NICPB

Principles

> " ...the Standard Model has been "ruled in" because it was based on principles, in particular the gauge principle and renormalisability..."

Prof. Hassan, @PACTS 2018, June 18, Tallinn

We'd like to build the theory of gravity on these principles. Thus we'll adopt Cartan's gauge geometry and will write down only polynomial actions.

Cartan geometry

- The idea: a distance can be measured by monitoring how much a wheel has rotated when rolled without slipping.

- The maths: generalise the tangent space \mathbb{R}^{n} by G / H
- Transitive action of the Lie group G
- Stabiliser $H=\{g \in G \mid g x=x\}$ given $x \in G / H$
- Example: the $S O(1,4) / S O(1,3)$

Gravity with more or less variables

We'll gauge the $S O(3,1)$ and break it. We'll need

- the spin connection $\omega^{I J}$
- the symmetry-breaking field τ^{\prime}

The standard approach assumes also the vierbein e^{l}
In e.g. Poincaré gauge theory, MAG, TEGR, etc., the relation of the vierbein and the translational gauge potential θ is

$$
\theta^{\prime}=e^{\prime}-D \tau^{\prime}
$$

The τ^{l} is known as e.g. "the generalised Higgs field", the "Poincaré coordinates", the "Cartan's generalised radius vector" etc but is (almost) always hidden in the gauge $D \tau^{\prime}=0$ or $\tau^{\prime}=0$.

The action

$$
S_{G}[\omega, \tau]=\int \mathcal{L}_{G}=\int P_{\nu K K} D \tau^{\prime} D \tau^{J} R^{K L}
$$

- Products: with the \wedge e.g. $D \tau^{\prime} D \tau^{J} \equiv D \tau^{\prime} \wedge D \tau^{J}=D_{\mu} \tau^{\prime} D_{\nu} \tau^{J} d x^{\mu} \wedge d x^{\nu}$
- The projector $P_{I J K L} \equiv \frac{1}{2}\left(\frac{1}{2} \epsilon_{I J K L}+\frac{1}{\gamma} \eta_{I K} \eta_{J L}\right)$
- $\epsilon_{I K K L}$ is the completely antisymmetric $S O(3,1)$ invariant
- $\eta_{I J}$ is the symmetric $S O(3,1)$ invariant
- γ is the Barbero-Immirzi -parameter
- The curvature $R^{\mu}=\frac{1}{2} R^{\mu}{ }_{\mu \nu} d x^{\mu} \wedge d x^{\nu}$
- components: $R_{J \alpha \beta}^{\prime} \equiv 2 \partial_{[\alpha \mid} \omega_{J \mid \beta]}^{\prime}+2 \omega^{\prime}{ }_{K[\alpha \mid} \omega^{K}{ }_{J \mid \beta]}$
- The gradient: $D \tau^{\prime}=D_{\mu} \tau^{\prime} d x^{\mu}$
- components: $D_{\mu} \tau^{\prime} \equiv \partial_{\mu} \tau^{\prime}+\omega^{\prime}{ }_{J \mu} \tau^{J}$

Equations of motion

The action

$$
\begin{aligned}
S_{G}[\omega, \tau] & =\int \mathcal{L}_{G}=P_{I J K L} \int D \tau^{\prime} D \tau^{J} R^{K L} \\
& =\frac{1}{2} \int\left(\frac{1}{2} \tau^{2} \epsilon_{I J K L}-\frac{1}{\gamma} \tau_{I} \tau_{K} \eta_{J L}\right) R^{I J} R^{K L}
\end{aligned}
$$

The connection EoM

$$
P_{I J L M} R_{N}^{\prime} \tau^{N} D \tau^{J}-\tau_{[L} P_{M] J K K} D \tau^{\prime} R^{J K}=0
$$

The scalar EoM

$$
P_{I J K L} R_{M}^{J} \tau^{M} R^{K L}=0
$$

Summary of the theory

Variables: $\omega^{I J}$ and τ^{\prime}

Now the "vierbein" is $D \tau^{\prime}$, and the "torsion" is $D D \tau^{\prime}=R^{\prime} J \tau^{J}$.
Field equations from the action $S_{G}[\omega, \tau]=\int P_{J K L} D \tau^{\prime} D \tau^{J} R^{K L}$
Now the δ_{ω} gives field equation, and the δ_{τ} a Bianchi identity.

Symmetric solution

We immediately obtain an exact solution: $\tau^{\prime}=0, \Omega^{I J}=$ anything.
Solutions with spacetime
When $D \tau^{\prime} \neq 0$, we'll obtain a nonzero $g_{\mu \nu}=D_{\mu} \tau^{\prime} D_{\nu} \tau_{l}$.

Gauge fixing

- A partial gauge fixing:

$$
\overline{\mathcal{D}}_{a} \tau^{0}=\bar{d} \tau^{0}+\bar{\omega}^{0 i} \tau_{i} \stackrel{*}{=} 0
$$

where i, j, k are in $S O(3) \in S O(3,1)$.

- Assume a time-like norm:

$$
-\tau^{2} \equiv \tau^{\prime} \tau_{l}<0
$$

This breaks $S O(3,1)$ down to a residual $S O(3)$ invariance.
The spatial triad appears within the connection

$$
D \tau^{0}=d \tau, \quad D \tau^{i}=\omega^{i}{ }_{0} \tau^{0} \equiv E^{i}
$$

Connection

The pullback $\bar{\omega}^{\prime J}$ of $\omega^{\prime J}$ to surface Σ of constant τ :

$$
\bar{\omega}^{\prime \prime} \stackrel{*}{=}\left(\begin{array}{cc}
0 & \frac{1}{\tau} E^{i} \\
-\frac{1}{\tau} E^{i} & \epsilon^{i j k}\left(\Gamma_{k}-\frac{1}{\gamma}\left(K_{k}-\frac{1}{\tau} E_{k}\right)\right.
\end{array}\right)
$$

- $\epsilon^{i j k} \Gamma_{k}$ is the torsion-free E^{i}-compatible $S O(3)$-connection
- K_{i} is the extrinsic curvature form
- Set spatial coordinates x^{a} on Σ, define $h_{a b}=\delta_{i j} E_{a}^{i} E_{b}^{j}$:
- $K_{a b} \equiv \frac{1}{2} \mathcal{L}_{\left(n^{\mu}\right)} h_{a b}$ where n^{μ} is the unit normal to Σ
- Relation to the to the curvature form $K_{i}=K_{a b} E_{i}^{b} d x^{a}$
- The metric part of $\bar{\omega}^{0 i}$ describes distances on Σ
- The metric part of $\bar{\omega}^{i j}$ related to the intrinsic curvature
- The torsionful part of $\bar{\omega}^{i j}$ related to the extrinsic curvature

GR recovered only when $\gamma^{2}=-1$

With a general value of γ, the equations of motion for the spatial metric $h_{a b}$ are produced from the following Lagrangian

$$
L=\sqrt{h}\left(R^{(3)}+\frac{1}{\gamma^{2}}\left(K^{2}-K^{a b} K_{a b}\right)\right)
$$

- This is valid in the frame $t=\tau$
- $R^{(3)}$ is the Ricci scalar corresponding to $h_{a b}$
- $K_{a b}$ is the extrinsic curvature

Iff $\gamma^{2}=-1$ we recover the ADM Lagrangian with unit lapse.

Different from LQG

where the Barbero-Immirzi parameter is not fixed.

The self-dual curvature

- Any $\mathrm{SO}(3,1)$-form can be decomposed as $f^{I J}=f^{+I J}+f^{-I J}$
- $f^{+\prime J}=\frac{1}{2}\left(f^{\prime J}-\frac{i}{2} \epsilon^{\prime J}{ }_{K L}{ }^{\kappa L}\right)$
- $f^{-I J}=\frac{1}{2}\left(f^{\prime J}+\frac{i}{2} \epsilon^{\prime J}{ }_{k L} f^{K L}\right)$
- These are the self-dual and anti-self-dual pieces
- $\frac{1}{2} \epsilon^{\prime J}{ }_{K L} f^{+K L}=i f^{+I J}$
- $\frac{1}{2} \epsilon^{I J}{ }_{K L} f^{-K L}=-i f^{-I J}$
- When $\gamma= \pm i$, the $P_{I J K L}$ is the projector
- $\gamma=i: P^{\prime \prime}{ }_{k L} f^{K L}=\frac{1}{2} \epsilon^{\prime \prime}{ }_{k L} f^{+K L}$
- $\gamma=-i: P^{\prime J}{ }_{K L} f^{K L}=\frac{1}{2} \epsilon^{\prime J}{ }_{K L} f^{-K L}$

If $\gamma=i$, the action involves the self-dual curvature
$S_{G}[\omega, \tau]=P_{I J K L} \int D \tau^{\prime} D \tau^{J} R^{K L}=\frac{1}{2} \epsilon_{I J K L} \int D \tau^{\prime} D \tau^{J} R^{+K L}$

Self-dual connection

The pullback $\bar{\omega}^{I J}$ of $\omega^{I J}$ to surface Σ of constant τ :

$$
\bar{\omega}^{\prime \prime} \stackrel{*}{=}\left(\begin{array}{cc}
0 & \begin{array}{c}
\frac{1}{\tau} E^{i} \\
-\frac{1}{\tau} E^{i}
\end{array} \\
\epsilon^{j j k}\left(\Gamma_{k}-i\left(K_{k}-\frac{1}{\tau} E_{k}\right)\right)
\end{array}\right)
$$

$$
\omega^{ \pm I J}=\frac{1}{2}\left(\begin{array}{cc}
0 & \pm i\left(\Gamma^{i}-i k^{i}\right)+(1 \mp 1) \frac{\xi^{i}}{\varepsilon^{\prime}} \\
\mp i\left(\Gamma^{i}-i K^{i}\right)-(1 \mp 1) \frac{E^{i}}{\tau} & \epsilon^{i j k}\left(\Gamma_{k}-i K_{k}\right)+i(1 \mp 1) \epsilon^{j k} \frac{E_{k}}{\tau}
\end{array}\right)
$$

Compare with the ECSK theory:

$$
\bar{\omega}_{(E C S K)}^{\prime \prime} \stackrel{*}{=}\left(\begin{array}{cc}
0 & k^{i} \tag{1}\\
-\kappa^{i} & e^{j k r_{k}}
\end{array}\right), \quad \bar{e}_{(E C S K)}^{\prime} \stackrel{*}{=}\binom{0}{E^{i}}
$$

$$
\omega^{+I J}=\frac{1}{2}\left(\begin{array}{cc}
0 & i\left(\Gamma^{i}-i \kappa^{i}\right) \tag{2}\\
-i\left(\Gamma^{i}-i K^{i}\right) & \epsilon^{j j k}\left(\Gamma_{k}-i K_{k}\right)
\end{array}\right)=\omega_{(E \text { ECSK })}^{+J}
$$

$1+3$

- Assume topology $R \times \Sigma$ for some submanifold Σ
- Σ corresponds $t=\operatorname{cst}$. where $t\left(x^{\mu}\right)$ is a global time function - Introduce spatial coordinates x^{a} covering Σ
- Introduce \bar{d} the exterior derivative according to the x^{a}
- Decompose the fields and their exterior derivatives as:

$$
\begin{aligned}
& \omega^{I J}=\omega^{\prime J} d t+\bar{\omega}^{\prime J} \\
& d \tau^{\prime}=\partial_{t} \tau^{\prime} d t+\bar{d} \tau^{\prime} \\
& d \omega^{\prime J}=\partial_{t} \bar{\omega}^{\prime J} d t d x^{a}+\bar{d} \omega^{\prime J} d t+\bar{d} \bar{\omega}^{\prime J} \\
& \mathcal{L}_{G} \stackrel{b}{=} P_{I J K L} d t\left(2 \overline{\mathcal{D}} \tau^{J} \bar{R}^{k L} \partial_{t} \tau^{\prime}+\overline{\mathcal{D}} \tau^{\prime} \overline{\mathcal{D}} \tau^{J} \partial_{t} \bar{\omega}^{k L}{ }_{a} d x^{a}\right) \\
&+P_{I J K L} d t\left(2 \Omega^{\prime M} \tau_{M} \overline{\mathcal{D}} \tau^{J} \bar{R}^{\kappa L}+\Omega^{\kappa L} \overline{\mathcal{D}}\left(\overline{\mathcal{D}} \tau^{\prime} \overline{\mathcal{D}} \tau^{J}\right)\right)
\end{aligned}
$$

The 1+3 Lagrangian

- Introduce the momenta for τ^{0} and τ^{i} :

$$
\begin{aligned}
\pi_{0} & \equiv 2 P_{0 j k L} E^{j} \bar{R}^{K L} \\
\pi_{i} & \equiv 2 P_{i j k L} E^{j} \bar{R}^{K L}
\end{aligned}
$$

- Force them with multipliers, vary wrt them and obtain:

$$
\begin{aligned}
\pi_{0} \tau_{i}-\pi_{i} \tau_{0} & =0 \\
\pi_{[i} \tau_{j]} & =0
\end{aligned}
$$

- Use these and obtain:

$$
\begin{aligned}
\mathcal{L}_{G} & \stackrel{b}{=} \frac{1}{2} d t \epsilon_{i j k L} E^{i} E^{j} \partial_{t} \bar{\omega}_{a}^{+\kappa L} d x^{a}+\pi_{0} \frac{\tau}{\tau_{0}} d \tau \\
& +d t \Omega^{0 i+} \epsilon_{0 i j k} \overline{\mathcal{D}}^{+}\left(E^{j} E^{\kappa}\right)+P_{i}\left(E^{i}-\overline{\mathcal{D}} \tau^{i}\right) \\
& +\lambda\left(\pi_{0}-2 P_{0 j k L} E^{j} \bar{R}^{\kappa L}\right)+\lambda^{i}\left(\pi_{i}-2 P_{i j \kappa L} E^{j} \bar{R}^{\kappa L}\right)
\end{aligned}
$$

The Hamiltonian

Renaming things:

- Introduce \mathcal{P} via $\pi_{0}=\left(\tau_{0} / \tau\right) \mathcal{P}$
- Introduce N via $\lambda=N d t$
- Introduce N^{i} via $\lambda^{i}=N^{i} d t$
- Use τ instead of $\tau^{0}=\sqrt{\tau^{2}+\tau^{i} \tau_{i}}$

The result becomes:

$$
S_{G} \stackrel{b}{=} \int d t\left(\epsilon_{i j k} E^{i} E^{j} \partial_{t} \bar{\omega}_{a}^{+0 k} d x^{a}+\mathcal{P} \partial_{t} \tau-\mathcal{H}\right)
$$

where the Hamiltonian three-form \mathcal{H} is:

$$
\begin{aligned}
\mathcal{H} & =\Omega^{i 0+} \epsilon_{i j k} \overline{\mathcal{D}}^{+}\left(E^{j} E^{k}\right) \\
& +N\left(\mathcal{P} \sqrt{1+\partial^{a} \tau \partial_{a} \tau}+\epsilon_{i j k} E^{i} \bar{R}^{+j k}\right) \\
& +N^{i}\left(\mathcal{P} \partial_{i} \tau+2 \epsilon_{i j k} E^{j} \bar{R}^{+0 k}\right) .
\end{aligned}
$$

Covariant Ashtekar's self-dual gravity coupled to rotationless dust.

Summary of the analysis

The symmetry-broken phase

The spatial triad appears in the connection: $D \tau^{0}=d \tau, D \tau^{i}=E^{i}$.

The action is completely fixed: $S_{G}[\omega, \tau]=i \int \epsilon_{I J K L} D \tau^{l} D \tau^{J} R^{+K L}$
We need to consider a complex Lorentz group $S O(3,1, \mathbb{C})$.

The result:

Covariant Ashtekar's self-dual gravity coupled to rotationless dust.

The matter coupling:
Chiral $S_{S}[\omega, \tau]=i \int \epsilon_{I J K L} D \tau^{\prime} D \tau^{J} D \tau^{\kappa} \Psi_{A^{\prime}}^{*} \sigma^{L A^{\prime} A} D^{+} \Psi_{A}$ is consistent.

Dark matter

The solutions to the EoMs from $S_{G}[\omega, \tau]$ include those from

$$
S_{G}^{\prime}[g, \tau, \rho]=\frac{1}{2} \int \sqrt{-g} d^{4} \times\left(R-\rho\left(\partial^{\mu} \tau \partial_{\mu} \tau+1\right)\right)
$$

So does

- "Mimetic dark matter" (the minimal version)
- "Projectable Horava-Lifshitz gravity" (without a kinetic term)

Caustics?

There is no necessity that τ forms a global time coordinate. It is sufficient that the theory leads to field equations that can be evolved in physical situations of interest. The ability of τ to "tilt" from timelike to null values may be of importance in terms of its ability to evolve past "caustic" situations.

Singularities

A problem with mimetics:

With the shift symmetry $\tau \rightarrow \tau+$ cst., inflation dilutes the $\rho_{D M}$.

A possible solution: break the symmetry
We could add kinetic terms to τ, or non-minimal matter couplings.

A more interesting possibility: reconsider the Big Bang \& inflation
Recall the trivial solution $\tau^{\prime}=0, \omega^{I J}=$ anything. Can we (more/less smoothly) join this with the expanding dust solution?

Extensions

- Enlarging the gauge group
- Double relativism $S O(3,1) \rightarrow S O(4,1)$: invariance of both c and $M_{\text {Planck }}$
- Conformalism $S O(4,1) \rightarrow S O(4,2)$: rid of absolute scales
- et cetera $S O(4,2) \rightarrow S O(N, 14-N)$: towards GraviGUTs ála Percacci

- Changing the gauge group

- Unitary geometry: $S O(4) \simeq S U(2) \otimes S U(2)$
- Hermitian geometry: $S O(3,1) \simeq S L(2, \mathbb{C})$
- Spinorial Khronon: $\tau^{l}=\bar{\Psi} \gamma^{\prime} \Psi$

Modifying gravity: a universal recipe

- An example: vector
- Take e^{a} and a vector V^{a}
- Write down the polynomials (many are redundant)
- Obtain: the Horndeski when $V_{\mu}=\partial_{\mu} \phi$
- If $e^{a}=D \tau^{a}$ we'll get " mimetic Horndeski" ?

$$
\begin{aligned}
L & =a_{a b c d} R^{a b} R^{c d}+b_{a b c} R^{a b} T^{c}+c_{a b} T^{a} T^{b} \\
& +d_{a b c d} R^{a b} \mathrm{e}^{c} \mathrm{e}^{d}+d_{a b c d}^{v} R^{a b} \mathrm{D} V^{c} \mathrm{D} V^{d} \\
& +e_{a b c} T^{a} \mathrm{e}^{b} \mathrm{e}^{c}+e_{a b c}^{v} T^{a} \mathrm{D} V^{b} \mathrm{D} V^{c} \\
& +d_{a b c d}^{\prime} R^{a b} \mathrm{e}^{c} \mathrm{D} V^{d}+e_{a b c}^{\prime} T^{a} \mathrm{e}^{b} \mathrm{D} V^{c} \\
& +f_{a b c d} \mathrm{e}^{a} \mathrm{e}^{b} \mathrm{e}^{c} \mathrm{e}^{d}+f_{a b c d}^{\prime} \mathrm{e}^{a} \mathrm{e}^{b} \mathrm{e}^{c} \mathrm{D} V^{d} \\
& +f_{a b c d}^{\prime \prime} \mathrm{e}^{a} \mathrm{e}^{b} \mathrm{D} V^{c} \mathrm{D} V^{d}+f_{a b c d}^{\prime \prime \prime} \mathrm{e}^{a} \mathrm{D} V^{b} \mathrm{D} V^{c} \mathrm{D} V^{d} \\
& +f_{a b c d}^{v} \mathrm{D} V^{a} \mathrm{D} V^{b} \mathrm{D} V^{c} \mathrm{D} V^{d},
\end{aligned}
$$

- Example with 2-form \Rightarrow the "generalised Proca" terms
- Example with two tetrads: bigravity (next talk)
- The potential interactions: $\epsilon_{a b c d} e^{a} e^{b} e^{c} f^{d}, \epsilon_{a b c d} e^{a} e^{b} f^{c} f^{d}, \epsilon_{a b c d} e^{a} f^{b} f^{c} f^{d}$
- New kinetic interactions? Mimetic bigravity? Chiral bigravity?

The universal recipe

to obtain all the consistent actions with any field content: covariant, generalised (with torsion) and complete. [Arxiv:1807.xxxx].

Summary: "the Cartan Khronon"

- Principle: a 1) minimal 2) polynomial 3) gauge theory

The theory $S_{G}[\omega, \tau]=i \int \epsilon_{I J K L} D \tau^{I} D \tau^{J} R^{+K L}$ is chiral GR + dust

Spacetime and dark matter from spontaneous breaking of Lorentz symmetry
Tom Złośnik ${ }^{1}$, Federico Urban ${ }^{1}{ }^{\dagger}$ Luca Marzola ${ }^{2}{ }^{\ddagger}$ and Tomi Koivisto ${ }^{3 \S}$
${ }^{1}$ Institute of Physics of the Czech Academy of Sciences,
Na Slovance 1999/2, 182 21, Prague
${ }^{2}$ KBFI, Akadeemia Tee 23, Tallinn, Estonia
${ }^{3}$ NORDITA, Roslagstullsbacken 23,
10691 Stockholm, Sweden

- Next
- Resolution of singularities?
- Complete model of the universe?
- Then
- Unification?
- Quantisation?

