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It is shown that Ashtekar’s chiral formulation of General Relativity accompanied by dust can be formulated
as a spontaneously-broken gauge theory of the Lorentz group. From this perspective, gravity is described by a
connection !I

J = !I
Jµdxµ valued in the Lie algebra of the complexified Lorentz group and a Lorentz-charged

scalar field ⌧ I . The model is ‘pre-geometric’ in the sense that the spacetime metric may be constructed only in
the symmetry-broken regime. We speculate on the extent to which this dust may account for dark matter and
the behaviour of the theory in regimes where the symmetry is not broken.

I. INTRODUCTION

Lorentz symmetry is a cornerstone of modern physics. The
Lagrangians of particle physics are invariant under global
Lorentz transformations; with coupling to gravity in the
Einstein-Cartan-Sciama-Kibble (ECSK) formulation [1], this
is promoted to a local Lorentz invariance. Nonetheless,
Lorentz invariance is spontaneously broken in many physical
systems. The possibility that additional fields may exist in the
gravitational sector that spontaneously break Lorentz symme-
try has attracted a lot of attention recently, for example in the
Einstein-Aether [2] and ghost condensate [3]) models.

As a separate issue, the extent to which gravity can be for-
mulated in a manner reminiscent of the theories of particle
physics has been on ongoing area of research. In what sense
is gravity a gauge theory [4–7]? It was discovered [8, 9]
that the ECSK theory can arise as a limit of a spontaneously-
broken gauge theory whose mathematical ingredients are a
gauge field for the de Sitter (or anti-de Sitter) group and a
‘Higgs’ scalar field in the fundamental representation of the
group which breaks the symmetry down to that of SO(1, 3),
the Lorentz group; here the metric tensor arises as a compos-
ite object built from the connection and Higgs field. We will
look to implement Lorentz violation in the gravitational sec-
tor by adopting a similar description. However, instead our
variables will be taken to be a gauge field !I

J = !I
Jµdxµ

for the Lorentz group and a Lorentz-charged scalar field ⌧ I

which is free to break the Lorentz symmetry down to SO(3)
if ⌧I⌧

I < 0 1. The gravitational effect of the symmetry break-
ing will be shown to be that of an additional dust component in
the universe and we will examine the extent to which this may
be the origin of dark matter phenomenology. We consider the
following polynomial action in these variables:
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where ✏IJKL is the completely antisymmetric SO(1, 3) invari-
ant. It will be convenient to express quantities as differential
forms. It may be shown that (1) can be written as an integral
over a four-form:

SG[!, ⌧ ] =

Z
LG =

Z
PIJKLD⌧ ID⌧JRKL (5)

where D⌧ I = Dµ⌧
Idxµ, RIJ = 1

2RIJ
µ⌫dxµdx⌫ and, unless

otherwise stated, forms are multiplied via the wedge product.
The equations of motion following from (5) can be found by
standard methods, yielding:

0 = �PIJLMRI
N⌧ND⌧J + ⌧[LPM ]IJKD⌧ IRJK (6)

0 = PIJKLRJ
M⌧MRKL (7)

To make progress we will perform a 3+1 decomposition of
fields and construct the Hamiltonian for the theory. It is this
way that we will make contact with more familiar models.

II. HAMILTONIAN FORMULATION

We assume that the manifold M is topologically R ⇥ ⌃
for some submanifold ⌃. We will use indices a, b, c for spa-
tial coordinates xa covering ⌃ and these surfaces correspond
to t = cst. where t(xµ) is a global time function. We may
additionally define a ‘flow of time’ vector tµ which satisfies
tµ@µt = 1. As such we can decompose the fields {⌧ I ,!IJ}
and their exterior derivatives as:
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Principles

”...the Standard Model has been ”ruled in” because it was based
on principles, in particular the gauge principle and
renormalisability...”

Prof. Hassan, @PACTS 2018, June 18, Tallinn

We’d like to build the theory of gravity on these principles. Thus
we’ll adopt Cartan’s gauge geometry and will write down only
polynomial actions.
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Cartan geometry

The idea: a distance can be measured by monitoring how
much a wheel has rotated when rolled without slipping.6

(a) Traditional waywiser (b) Idealized waywiser

Figure 1: The figure on the left is a traditional waywiser depicted rolling along on a two-dimensional surface.
A mechanism converts the rolling of the wheel into a measure of distance traversed along the dotted path, as
depicted by the changing orientation of the orange arrow. The picture on the right depicts a mathematical
idealization and generalization. The wheel has been replaced by a symmetric space, a sphere, and the
geometry of the manifold is now revealed by how this symmetric space has rotated when rolled (without
slipping) along some path on a manifold.

V i(x1)

V i(x2)

V i(x3)

Figure 2: A figure demonstrating that the contact point between the ideal waywiser and manifold is the
only possible point of contact, and so the ideal waywiser at a given point is ‘invisible’ to all other points. As
such, the rolling of the ideal waywiser from x1 ! x2 ! x3 is unhindered by features on the surface.

2.1.1 Mathematical representation of the contact point

The first feature of an idealized waywiser is that it has a contact point between itself and the two-dimensional
surface being probed. See the right figure in Fig. 1 for an illustration. This is where the ‘rubber meets the
road’ as it were. Such a point of contact is itself a point on the sphere S2. It is then convenient to represent
the contact point by a contact vector V i satisfying V iV j�ij = `2 where �ij = diag(1, 1, 1). We visualize this
vector as originating from the center of the sphere S2 and ending at the point of contact where the sphere
and manifold meet. The Latin index i = 1, 2, 3 of the contact vector V i can conveniently be interpreted in

The maths: generalise the tangent space Rn by G/H

Transitive action of the Lie group G
Stabiliser H = {g ∈ G |gx = x} given x ∈ G/H

Example: the SO(1, 4)/SO(1, 3)
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Gravity with more or less variables

We’ll gauge the SO(3, 1) and break it. We’ll need

the spin connection ωIJ

the symmetry-breaking field τ I

The standard approach assumes also the vierbein e I

In e.g. Poincaré gauge theory, MAG, TEGR, etc., the relation of
the vierbein and the translational gauge potential θ is

θI = e I − Dτ I .

The τ I is known as e.g. ”the generalised Higgs field”, the
”Poincaré coordinates”, the ”Cartan’s generalised radius vector”
etc but is (almost) always hidden in the gauge Dτ I = 0 or τ I = 0.
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The action

SG [ω, τ ] =
∫
LG =

∫
PIJKLDτ

IDτ JRKL

Products: with the ∧ e.g. Dτ IDτJ ≡ Dτ I ∧ DτJ = Dµτ
IDντ

Jdxµ ∧ dxν

The projector PIJKL ≡ 1
2

(
1
2εIJKL + 1

γ ηIKηJL

)

εIJKL is the completely antisymmetric SO(3, 1) invariant
ηIJ is the symmetric SO(3, 1) invariant
γ is the Barbero-Immirzi -parameter

The curvature R IJ = 1
2R

IJ
µνdx

µ ∧ dxν

components: R I
Jαβ ≡ 2∂[α|ω

I
J|β] + 2ωI

K [α|ω
K
J|β]

The gradient: Dτ I = Dµτ
Idxµ

components: Dµτ
I ≡ ∂µτ I + ωI

Jµτ
J
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Equations of motion

The action

SG [ω, τ ] =

∫
LG = PIJKL

∫
Dτ IDτ JRKL

=
1

2

∫ (
1

2
τ2εIJKL −

1

γ
τI τKηJL

)
R IJRKL

The connection EoM

PIJLMR
I
Nτ

NDτ J − τ[LPM]IJKDτ
IR JK = 0

The scalar EoM

PIJKLR
J
Mτ

MRKL = 0
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Summary of the theory

Variables: ωIJ and τ I

Now the ”vierbein” is Dτ I , and the ”torsion” is DDτ I = R I
Jτ

J .

Field equations from the action SG [ω, τ ] =
∫
PIJKLDτ

IDτ JRKL

Now the δω gives field equation, and the δτ a Bianchi identity.

Symmetric solution

We immediately obtain an exact solution: τ I = 0, ΩIJ = anything.

Solutions with spacetime

When Dτ I 6= 0, we’ll obtain a nonzero gµν = Dµτ
IDντI .



Theory Analysis Applications

Gauge fixing

A partial gauge fixing:

D̄aτ
0 = d̄τ0 + ω̄0iτi

∗
= 0

where i , j , k are in SO(3) ∈ SO(3, 1).

Assume a time-like norm:

−τ2 ≡ τ IτI < 0

This breaks SO(3, 1) down to a residual SO(3) invariance.

The spatial triad appears within the connection

Dτ0 = dτ , Dτ i = ωi
0τ

0 ≡ E i .
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Connection

The pullback ω̄IJ of ωIJ to surface Σ of constant τ :

ω̄IJ ∗=




0 1
τ E

i

− 1
τ E

i εijk
(

Γk − 1
γ

(
Kk − 1

τ Ek

))



εijkΓk is the torsion-free E i -compatible SO(3)-connection

Ki is the extrinsic curvature form

Set spatial coordinates xa on Σ, define hab = δijE
i
aE

j
b:

Kab ≡ 1
2L(nµ)hab where nµ is the unit normal to Σ

Relation to the to the curvature form Ki = KabE
b
i dx

a

The metric part of ω̄0i describes distances on Σ

The metric part of ω̄ij related to the intrinsic curvature

The torsionful part of ω̄ij related to the extrinsic curvature
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GR recovered only when γ2 = −1

With a general value of γ, the equations of motion for the spatial
metric hab are produced from the following Lagrangian

L =
√
h

(
R(3) +

1

γ2

(
K 2 − K abKab

))

This is valid in the frame t = τ

R(3) is the Ricci scalar corresponding to hab

Kab is the extrinsic curvature

Iff γ2 = −1 we recover the ADM Lagrangian with unit lapse.

Different from LQG

where the Barbero-Immirzi parameter is not fixed.
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The self-dual curvature

Any SO(3,1)-form can be decomposed as f IJ = f +IJ + f −IJ

f +IJ = 1
2 (f IJ − i

2ε
IJ
KLf

KL)

f −IJ = 1
2 (f IJ + i

2ε
IJ
KLf

KL)

These are the self-dual and anti-self-dual pieces
1
2ε

IJ
KLf

+KL = i f +IJ

1
2ε

IJ
KLf

−KL = −i f −IJ

When γ = ±i , the PIJKL is the projector

γ = i : P IJ
KLf

KL = 1
2ε

IJ
KLf

+KL

γ = −i : P IJ
KLf

KL = 1
2ε

IJ
KLf

−KL

If γ = i , the action involves the self-dual curvature

SG [ω, τ ] = PIJKL

∫
Dτ IDτ JRKL = 1

2εIJKL
∫
Dτ IDτ JR+KL
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Self-dual connection

The pullback ω̄IJ of ωIJ to surface Σ of constant τ :

ω̄IJ ∗=
(

0 1
τ
E i

− 1
τ
E i εijk
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Γk − i
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)

ω
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Compare with the ECSK theory:

ω̄IJ

(ECSK)
∗
=
(

0 K i

−K i εijkΓk

)
, ē I

(ECSK)
∗
=
(

0

E i

)
(1)

ω
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2

 0 i
(

Γi − iK i
)

−i
(

Γi − iK i
)

εijk (Γk − iKk )

 = ω
+IJ
(ECSK) (2)
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1+3

Assume topology R × Σ for some submanifold Σ
Σ corresponds t = cst. where t(xµ) is a global time function

Introduce spatial coordinates xa covering Σ
Introduce d̄ the exterior derivative according to the xa

Decompose the fields and their exterior derivatives as:

ωIJ = ωIJdt + ω̄IJ

dτ I = ∂tτ
Idt + d̄τ I

dωIJ = ∂t ω̄
IJ
adtdx

a + d̄ωIJdt + d̄ ω̄IJ

LG
b
= PIJKLdt

(
2D̄τ JR̄KL∂tτ

I + D̄τ I D̄τ J∂t ω̄
KL

adx
a

)

+ PIJKLdt

(
2ΩIMτMD̄τ JR̄KL + ΩKLD̄

(
D̄τ I D̄τ J

))
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The 1+3 Lagrangian

Introduce the momenta for τ0 and τ i :

π0 ≡ 2P0jKLE
j R̄KL

πi ≡ 2PijKLE
j R̄KL

Force them with multipliers, vary wrt them and obtain:

π0τi − πiτ0 = 0

π[iτj] = 0

Use these and obtain:

LG
b
=

1

2
dtεijKLE

iE j∂t ω̄
+KL

a dx
a + π0

τ

τ0
dτ

+ dtΩ0i+ε0ijkD̄+
(
E jE k

)
+ Pi

(
E i − D̄τ i

)

+ λ(π0 − 2P0jKLE
j R̄KL) + λi (πi − 2PijKLE

j R̄KL)
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The Hamiltonian

Renaming things:

Introduce P via π0 = (τ0/τ)P
Introduce N via λ = Ndt
Introduce N i via λi = N idt
Use τ instead of τ0 =

√
τ2 + τ iτi

The result becomes:

SG
b
=

∫
dt

(
εijkE

iE j∂t ω̄
+0k

a dx
a + P∂tτ −H

)

where the Hamiltonian three-form H is:

H = Ωi0+εijkD̄+
(
E jE k

)

+ N(P
√

1 + ∂aτ∂aτ + εijkE
i R̄+jk)

+ N i (P∂iτ + 2εijkE
j R̄+0k) .

Covariant Ashtekar’s self-dual gravity coupled to rotationless dust.
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Summary of the analysis

The symmetry-broken phase

The spatial triad appears in the connection: Dτ0 = dτ , Dτ i = E i .

The action is completely fixed: SG [ω, τ ] = i
∫
εIJKLDτ

IDτ JR+KL

We need to consider a complex Lorentz group SO(3, 1,C).

The result:

Covariant Ashtekar’s self-dual gravity coupled to rotationless dust.

The matter coupling:

Chiral SS [ω, τ ] = i
∫
εIJKLDτ

IDτ JDτKΨ∗A′σ
LA′AD+ΨA is consistent.
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Dark matter

The solutions to the EoMs from SG [ω, τ ] include those from

S ′G [g , τ, ρ] =
1

2

∫ √−gd4x

(
R − ρ(∂µτ∂µτ + 1)

)

So does

”Mimetic dark matter” (the minimal version)

”Projectable Horava-Lifshitz gravity” (without a kinetic term)

Caustics?

There is no necessity that τ forms a global time coordinate. It is
sufficient that the theory leads to field equations that can be
evolved in physical situations of interest. The ability of τ to ”tilt”
from timelike to null values may be of importance in terms of its
ability to evolve past ”caustic” situations.
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Singularities

A problem with mimetics:

With the shift symmetry τ → τ + cst., inflation dilutes the ρDM .

A possible solution: break the symmetry

We could add kinetic terms to τ , or non-minimal matter couplings.

A more interesting possibility: reconsider the Big Bang & inflation

Recall the trivial solution τ I = 0, ωIJ =anything. Can we
(more/less smoothly) join this with the expanding dust solution?
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Extensions

Enlarging the gauge group
Double relativism SO(3, 1)→ SO(4, 1): invariance of both c and MPlanck
Conformalism SO(4, 1)→ SO(4, 2): rid of absolute scales

et cetera SO(4, 2)→ SO(N, 14− N): towards GraviGUTs ála Percacci

Changing the gauge group
Unitary geometry: SO(4) ' SU(2)⊗ SU(2)
Hermitian geometry: SO(3, 1) ' SL(2,C)

Spinorial Khronon: τ I = Ψ̄γI Ψ
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Modifying gravity: a universal recipe

An example: vector

Take ea and a vector V a

Write down the polynomials (many are
redundant)

Obtain: the Horndeski when Vµ = ∂µφ

If ea = Dτa we’ll get ”mimetic Horndeski”?

I also found some relations among the –type
coefficients, which schematically read:

TWO TWO (29a)

ONE THREE (29b)

TWO ONE ONE (29c)

which mean that the following relations among

coefficients hold:

(30a)

(30b)

(30c)

(30d)

(30e)

(30f)

(30g)

(30h)

(30i)

1.4 Lagrangian

Overall I can write the Lagrangian as follows:

e e

e e

e e (31)

e e e e e e e

e e e

where the set of indipendent terms can be given,
family by family as:

which is a set of 33 parameters, and the age of
Jesus when he was crucified. Recall that all those
coefficients are in general arbitrary functions of .
NEWS: accounting for the eight new relations I have
found we only have 25 total terms. So, Jesus has been
declassed to Randy Roads (or Tupac Shakur). We
don’t even make the 27-club.

2 Proca

In this section we try to make contact with the
generalised Proca theories of 1705.05387 and previous
works.

4

Example with 2-form ⇒ the ”generalised Proca” terms
Example with two tetrads: bigravity (next talk)

The potential interactions: εabcd e
aebec f d , εabcd e

aeb f c f d , εabcd e
af b f c f d

New kinetic interactions? Mimetic bigravity? Chiral bigravity?

The universal recipe

to obtain all the consistent actions with any field content:
covariant, generalised (with torsion) and complete. [ArXiv:1807.xxxx].
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Summary: ”the Cartan Khronon”

Principle: a 1) minimal 2) polynomial 3) gauge theory

The theory SG [ω, τ ] = i
∫
εIJKLDτ

IDτ JR+KL is chiral GR + dust
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It is shown that Ashtekar’s chiral formulation of General Relativity accompanied by dust can be formulated
as a spontaneously-broken gauge theory of the Lorentz group. From this perspective, gravity is described by a
connection !I

J = !I
Jµdxµ valued in the Lie algebra of the complexified Lorentz group and a Lorentz-charged

scalar field ⌧ I . The model is ‘pre-geometric’ in the sense that the spacetime metric may be constructed only in
the symmetry-broken regime. We speculate on the extent to which this dust may account for dark matter and
the behaviour of the theory in regimes where the symmetry is not broken.

I. INTRODUCTION

Lorentz symmetry is a cornerstone of modern physics. The
Lagrangians of particle physics are invariant under global
Lorentz transformations; with coupling to gravity in the
Einstein-Cartan-Sciama-Kibble (ECSK) formulation [1], this
is promoted to a local Lorentz invariance. Nonetheless,
Lorentz invariance is spontaneously broken in many physical
systems. The possibility that additional fields may exist in the
gravitational sector that spontaneously break Lorentz symme-
try has attracted a lot of attention recently, for example in the
Einstein-Aether [2] and ghost condensate [3]) models.

As a separate issue, the extent to which gravity can be for-
mulated in a manner reminiscent of the theories of particle
physics has been on ongoing area of research. In what sense
is gravity a gauge theory [4–7]? It was discovered [8, 9]
that the ECSK theory can arise as a limit of a spontaneously-
broken gauge theory whose mathematical ingredients are a
gauge field for the de Sitter (or anti-de Sitter) group and a
‘Higgs’ scalar field in the fundamental representation of the
group which breaks the symmetry down to that of SO(1, 3),
the Lorentz group; here the metric tensor arises as a compos-
ite object built from the connection and Higgs field. We will
look to implement Lorentz violation in the gravitational sec-
tor by adopting a similar description. However, instead our
variables will be taken to be a gauge field !I

J = !I
Jµdxµ

for the Lorentz group and a Lorentz-charged scalar field ⌧ I

which is free to break the Lorentz symmetry down to SO(3)
if ⌧I⌧

I < 0 1. The gravitational effect of the symmetry break-
ing will be shown to be that of an additional dust component in
the universe and we will examine the extent to which this may
be the origin of dark matter phenomenology. We consider the
following polynomial action in these variables:
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where ✏IJKL is the completely antisymmetric SO(1, 3) invari-
ant. It will be convenient to express quantities as differential
forms. It may be shown that (1) can be written as an integral
over a four-form:
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The equations of motion following from (5) can be found by
standard methods, yielding:

0 = �PIJLMRI
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0 = PIJKLRJ
M⌧MRKL (7)

To make progress we will perform a 3+1 decomposition of
fields and construct the Hamiltonian for the theory. It is this
way that we will make contact with more familiar models.

II. HAMILTONIAN FORMULATION

We assume that the manifold M is topologically R ⇥ ⌃
for some submanifold ⌃. We will use indices a, b, c for spa-
tial coordinates xa covering ⌃ and these surfaces correspond
to t = cst. where t(xµ) is a global time function. We may
additionally define a ‘flow of time’ vector tµ which satisfies
tµ@µt = 1. As such we can decompose the fields {⌧ I ,!IJ}
and their exterior derivatives as:

Next

Resolution of singularities?
Complete model of the universe?

Then

Unification?
Quantisation?
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