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Accelerated Expansion

Observations suggest that expansion is accelerated at early and late times

Primordial: Horizon & Flatness, Scale invariant perturbations
Current: SN-la, Age problem, Planck 2015: w = —1.0061+0.045

Accelerated expansion — Universe dominated by Dark Energy w < —%

Accelerated expansion = quasi-de Sitter w =~ —1

Inflationary Paradigm: Early Universe dominated by potential
Guth; Starobinsky 1980 density V(¢) of scalar field (inflaton field)

Current Dark Energy: Non-zero vacuum density A # 0

But A = fine-tuned as vacuum density ~ 10~ 120 of Planck density
“worse fine-tuning in Physics” Laurence Krauss

Quintessence: Universe dominated by V (¢) of another scalar field;
Ratra & Peebles 1989 the 51 element after baryons, CDM, y’s & V’s
Does not resolve A - problem: vacuum density assumed zero



Quintessential Inflation

e Quintessence problems:
Initial conditions
Coincidence
Potential flatness against radiative corrections
5th force problem: violation of the Principle of Equivalence

ameliorated by

S Both inflation and current acceleration
Peebles & Vilenkin 1999 due to the same field (cosmon)
Natural: inflation & quintessence based on the same idea
Economic: fewer parameters / mass scales & couplings

Common theoretical framework
Initial conditions for quintessence determined by inflationary attractor
Coincidence resolved by mass scales & couplings only



Quintessential Inflation
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QUINTESSENTIAL TAIL

Potential for Quintessential Inflation features two flat regions:
Inflationary Plateau & Quintessential Tail. Differ by ~ 10198

Form of Potential = artificial + Physics at extreme scales
Inflaton does not decay; must survive until the present

Non-oscillatory inflation

Reheating achieved by means other than inflaton decay
Radiative corrections and 5" force problems unresolved
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a- attractors to the rescue

e Scalar kinetic term features poles due to non-trivial Kahler manifold
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Stretching and flattening of the potential is similar
to stretching of inhomogeneities during inflation

Potential in the original
variables with kinetic term
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Potential in canonical
variables flattens because of

the stretching near the
boundary
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Kallosh, AL 2013

All of these models predict
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Planck 2013

Planck TT-}HowP
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Natural inflation
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e I[n excellent agreement with
Planck observations
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Exponential potential _%

Poles from a-attractors lﬁe Ar 1
(1 — \/Ga’mp

No vacuum density

Switch to canonical field M4 e"Vo A=e "M n=krVéa




Inflation
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ent with CMB observations

5 . 16
Allowed provided g > guin ) BE M ~ 10 Gev

Back-reaction significant

v~ | I Gravitino overproduction

ng = 0.968

0.004 < r < 0.012

0.9655 0.9660 0.9670 0.9675 0.9680 n = — 5 X 10_4
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Planck: ng = 0.96810.006 n, = —0.003+0.007 = < 0.07



Kination

After inflation kinetic density dominates
Inflaton oblivious of potential $+3Hp~0

Field rolls to quintessential tail

Radiation eventually dominates o R T— %qbz x a®
Field rolls for a while but eventually freezes _4
Residual density = Dark Energy today Py x @
Inp
: § ; : Ina
INF. |KINATION | RADIATION |  MATTER | DE




Kination

e Maximum roll for minimum reheating efficiency (minimum residual density)

Kination: ¢ = ®Yend + \g mp ln(t/tend)

mp (1 — Vtreh/ t )
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Radiation: ¢ = @yeh + |
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Instant Preneating

o Due to ESP at ¢g, which causes particle
Felder, Kofman, Linde (1999) production by breaking adiabaticity
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e Near poles ¢ hardly varies
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Instant Preheating

Due to ESP at ¢g, which causes particle
Felder, Kofman, Linde (1999) production by breaking adiabaticity
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Gravitino —
overproduction: Zreh < 109GeV = g <10

) . §5/233/2
Backreaction: ¢ 4+ 3H¢ + V/(¢) = — = g <1073

However there is no backreactionif h = O(1)

Spike of GWs: g 2 104




Instant Preneating

o Due to ESP at ¢g, which causes particle
Felder, Kofman, Linde (1999) production by breaking adiabaticity

BN Back-reaction significant
B Gravitino overproduction

Allowed provided g > ¢uin
|| DBack-reaction significant
“7| M Gravitino overproduction

e Results: Tron, ~ 10° — 10% GeV & N, = 62— 63

Without gravitino or backreaction: T}, ~ 1011 GeV N, ~ 59



Quintessence

e Inthelimit: ¢¢ — 00 1"
(¢ — Véa) V= 2ne 2" Mie Veomp

e Quintessential tail: exponential '}/ = VQ exp (—)\cp/mp)
VQ — Zne_an4 A= 2/V 6a = (2/'"’)'{’

Small @ — large 4 : subdominant quintessence

3 attractor which mimics background — no acceleration

Small 4 — large @ : super-Planckian non-canonical field

e Range with Planckian ¢ and successful acceleration:

3<Vea<5 o 15<a<4.2
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Quintessence

e Residual potential density comparable to present density
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Back-reaction significant
E Gravitino overproduction

e Results:
kK=24— 40 &
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Allowed provided g > gyin

B Back-reaction constraints significant

B Gravitino overproduction
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Conclusions

: - 3
e Correlated oredictions for tensors and waaII§SF' kmde Yyamada (2

e a-attractors naturally avoid radiative corrections and 5t force
problems, while generate a potential with multiple plateaus,
which can accommodate Quintessential Inflation
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Gravitational Reheating

Due to inflationary particle production of

Ford (1987) all light, non-conformally invariant fields
p- en
end _ T _endpd _ 99« 2 — H
Reheating g3/4 ggnd 1/4 gend I-Iezn Vend

temperature: Tien = 2472 Qieh 3
T,en ~ 10° GeV Gravitino constraint
1/4 1/4
s N, ~ 62 + In Vend + o Vend ~ 63.5
mp 3 reh
Frozen field: Q) = p—; ~ (HI:’::F ~ 10710 = Aprp ~43mp

However, spike in GWs challenges BBN
More efficient reheating is needed



