Recent developments in bimetric \& multimetric theories of gravity

Fawad Hassan
Stockholm University, Sweden

Particle, Astroparticle and Cosmology Tallinn Symposium (PACTS 2018)

June 18-22, 2018, Tallinn

Outline of the talk

Introduction

Motivation \& challenges

Bimetric theory: gravity with an extra spin-2 field

Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

Outline of the talk

Introduction

Motivation \& challenges

Bimetric theory: gravity with an extra spin-2 field

Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

Bimetric \& multimetric theories:

Gravity $\left(g_{\mu \nu}\right)$ coupled to extra spin-2 fields $\left(f_{\mu \nu}, \cdots\right)$.

Spectrum:

A massless spin-2 state + massive spin-2 states
Why interesting? What are they?
(Only formal, classical aspects discussed here)

Bimetric \& multimetric theories:

Gravity ($g_{\mu \nu}$) coupled to extra spin-2 fields $\left(f_{\mu \nu}, \cdots\right)$.

Spectrum:

A massless spin-2 state + massive spin-2 states
Why interesting? What are they?
(Only formal, classical aspects discussed here)
Relevance for today's talks: Spin-2 dark matter
Babichev, Marzola, Raidal, Schmidt-May, Urban, Veerme, von Strauss
[arXiv:1604.08564, 1607.03497]
Marzola, Raidal, Urban [arXiv:1708.04253]
Aoki, Mukohyama [arXiv:1604.06704]
Aoki, Maeda [arXiv:1707.05003]
Chu, Garcia-Cely [arXiv:1708.06764]
Gonzlez Albornoz, Schmidt-May, von Strauss [arXiv:1709.05128]

Outline of the talk

Introduction

Motivation \& challenges

Bimetric theory: gravity with an extra spin-2 field

Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

Motivation:

Recall: Spin $(s) \Rightarrow$ basic structure of field equations
Klein-Gordon (s=0) ~Maxwell ($s=1$) ~Einstein-Hilbert ($s=2$)
Standard Model: multiplets of $s=0, \frac{1}{2}, 1$ fields.
Additional structures and mixings crucial for viability (e.g. QED)

Motivation:

Recall: Spin $(s) \Rightarrow$ basic structure of field equations
Klein-Gordon (s=0) ~Maxwell ($s=1$) ~Einstein-Hilbert ($s=2$)
Standard Model: multiplets of $s=0, \frac{1}{2}, 1$ fields.
Additional structures and mixings crucial for viability (e.g. QED)

General relativity: the simplest $s=2$ theory.
No additional structure!

Motivation:

Recall: Spin $(s) \Rightarrow$ basic structure of field equations
Klein-Gordon (s=0) ~Maxwell ($s=1$) ~Einstein-Hilbert ($s=2$)
Standard Model: multiplets of $s=0, \frac{1}{2}, 1$ fields.
Additional structures and mixings crucial for viability (e.g. QED)

General relativity: the simplest $s=2$ theory.
No additional structure!

Unexplored theories: gravity with more spin-2 fields
Can such consistent theories exist? Or is GR unique?
Consequences?

Challenge: the ghost problem

Ghost: A field with negative kinetic energy
Example:

$$
\mathcal{L}=T-V=\left(\partial_{t} \phi\right)^{2} \ldots \quad \text { (healthy) }
$$

But

$$
\mathcal{L}=T-V=-\left(\partial_{t} \phi\right)^{2} \ldots \quad \text { (ghostly) }
$$

Consequences:

Challenge: the ghost problem

Ghost: A field with negative kinetic energy
Example:

$$
\mathcal{L}=T-V=\left(\partial_{t} \phi\right)^{2} \cdots \quad \text { (healthy) }
$$

But

$$
\mathcal{L}=T-V=-\left(\partial_{t} \phi\right)^{2} \cdots \quad \text { (ghostly) }
$$

Consequences:

- Instability: unlimited energy transfer from ghost to other fields
- Negative probabilities, violation of unitarity in quantum theory

Outline of the talk

Introduction
Motivation \& challenges

Bimetric theory: gravity with an extra spin-2 field

Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

GR with a generic spin-2 field

A dynamical theory for the metric $g_{\mu \nu} \&$ spin-2 field $f_{\mu \nu}$

$$
\mathcal{L}=m_{p}^{2} \sqrt{|g|} R-m^{4} \sqrt{|g|} V\left(g^{-1} f\right)+\mathcal{L}(f, \nabla f)
$$

GR with a generic spin-2 field

A dynamical theory for the metric $g_{\mu \nu} \&$ spin-2 field $f_{\mu \nu}$

$$
\mathcal{L}=m_{p}^{2} \sqrt{|g|} R-m^{4} \sqrt{|g|} V\left(g^{-1} f\right)+\mathcal{L}(f, \nabla f)
$$

- what is $V\left(g^{-1} f\right)$?
- what is $\mathcal{L}(f, \nabla f)$?
- proof of absence of the Boulware-Deser ghost

Digression: elementary symmetric polynomials $e_{n}(S)$

Consider matrix S with eigenvalues $\lambda_{1}, \cdots, \lambda_{4}$. Then,

$$
\begin{aligned}
& e_{0}(S)=1 \\
& e_{1}(S)=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}, \\
& e_{2}(S)=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{1} \lambda_{4}+\lambda_{2} \lambda_{3}+\lambda_{2} \lambda_{4}+\lambda_{3} \lambda_{4}, \\
& e_{3}(S)=\lambda_{1} \lambda_{2} \lambda_{3}+\lambda_{1} \lambda_{2} \lambda_{4}+\lambda_{1} \lambda_{3} \lambda_{4}+\lambda_{2} \lambda_{3} \lambda_{4}, \\
& e_{4}(S)=\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4} .
\end{aligned}
$$

Digression: elementary symmetric polynomials $e_{n}(S)$

Consider matrix S with eigenvalues $\lambda_{1}, \cdots, \lambda_{4}$. Then,

$$
\begin{aligned}
e_{0}(S) & =1, \\
e_{1}(S) & =\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}, \\
e_{2}(S) & =\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{1} \lambda_{4}+\lambda_{2} \lambda_{3}+\lambda_{2} \lambda_{4}+\lambda_{3} \lambda_{4}, \\
e_{3}(S) & =\lambda_{1} \lambda_{2} \lambda_{3}+\lambda_{1} \lambda_{2} \lambda_{4}+\lambda_{1} \lambda_{3} \lambda_{4}+\lambda_{2} \lambda_{3} \lambda_{4}, \\
e_{4}(S) & =\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4} . \\
& e_{0}(S)=1, \\
& e_{1}(S)=\operatorname{Tr}(S) \equiv[S], \\
& e_{2}(S)=\frac{1}{2}\left([S]^{2}-\left[S^{2}\right]\right), \\
& e_{3}(S)=\frac{1}{6}\left([S]^{3}-3[S]\left[S^{2}\right]+2\left[S^{3}\right]\right), \\
& e_{4}(S)=\operatorname{det}(S), \quad e_{n}(S)=0 \quad(n>4) .
\end{aligned}
$$

$$
\operatorname{det}(\mathbb{1}+S)=\sum_{n=0}^{4} e_{n}(S)
$$

$$
\begin{array}{r}
\operatorname{det}(\mathbb{1}+S)=\sum_{n=0}^{4} e_{n}(S) \\
V(S)=\sum_{n=0}^{4} \beta_{n} e_{n}(S)
\end{array}
$$

Where:

$$
\begin{array}{r}
\operatorname{det}(\mathbb{1}+S)=\sum_{n=0}^{4} e_{n}(S) \\
V(S)=\sum_{n=0}^{4} \beta_{n} e_{n}(S)
\end{array}
$$

Where:

$$
S_{\nu}^{\mu}=\left(\sqrt{g^{-1} f}\right)_{\nu}^{\mu}
$$

(square root of the matrix $g^{\mu \lambda} f_{\lambda \nu}$)
[de Rham, Gabadadze, Tolley (2010)]
[SFH, Rosen (2011); SFH, Rosen, Schmidt-May (2011)]

Potential issues:

Real? Unique? Covariant (rank-2 tensor)? more later ...

Ghost-free "bi-metric" theory

[SFH, Rosen (1109.3515,1111.2070)]
Ghost-free combination of kinetic and potential terms:

$$
\mathcal{L}=m_{g}^{2} \sqrt{|g|} R_{g}-m^{4} \sqrt{|g|} \sum_{n=0}^{4} \beta_{n} e_{n}\left(\sqrt{g^{-1} f}\right)+m_{f}^{2} \sqrt{|f|} R_{f}
$$

"bimetric" nature + minimal coupling of $g_{\mu \nu}$ to matter forced by the absence of ghost

Ghost-free "bi-metric" theory

[SFH, Rosen (1109.3515,1111.2070)]
Ghost-free combination of kinetic and potential terms:

$$
\mathcal{L}=m_{g}^{2} \sqrt{|g|} R_{g}-m^{4} \sqrt{|g|} \sum_{n=0}^{4} \beta_{n} e_{n}\left(\sqrt{g^{-1} f}\right)+m_{f}^{2} \sqrt{|f|} R_{f}
$$

"bimetric" nature + minimal coupling of $g_{\mu \nu}$ to matter forced by the absence of ghost

Hamiltonian analysis:
$7=2+5$ nonlinear propagating modes, no BD ghost!

- $C_{1}=0$,

$$
C_{2}=\frac{d}{d t} C_{1}=\{H, C\}=0
$$

Detailed analysis in [SFH, A. Lundkvist (arXiv:1802.07267)]

Outline of the talk

Introduction
 Motivation \& challenges
 Bimetric theory: gravity with an extra spin-2 field

Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

Potential consistency problems

Problem 1: Incompatible spacetimes
$g_{\mu \nu} \& f_{\mu \nu}$: Lorentzian metrics, may not admit compatible notions of space and time (3+1 splits)

Implications: no consistent time evolution equations, no Hamiltonian formulation.

Potential consistency problems

Problem 2: Uniqueness, Reality, Covariance
Recall the matrix square root $S_{\nu}^{\mu}=\left(\sqrt{g^{-1} f}\right)^{\mu}$:

- Multiple roots (non-unique)
- Possibly non-real
- May not transforms as a $(1,1)$ tensor: non-covariant

Can a unique, real, covariant S be spacified meaingfully?
Consistent with dynamics?
Answer: Yes. Also solves problem 1

Uniqueness and the local structure of spacetime

[SFH, M. Kocic (arXiv:1706.07806)]
Theorem: Reality + General Covariance \Rightarrow

Uniqueness and the local structure of spacetime

[SFH, M. Kocic (arXiv:1706.07806)]
Theorem: Reality + General Covariance \Rightarrow

* $S=$ unique real principal square root
* The null cones of $g_{\mu \nu}$ and $f_{\mu \nu}$ intersect in open sets

Type I

Type Ila

Type llb
Type III

Type IV

Types I-III: proper 3+1 decompositions, allowed.
Type IV: excluded by general covariance (Implication for accausality arguments in the literature)

Outline of the talk

> Introduction

> Motivation \& challenges

> Bimetric theory: gravity with an extra spin-2 field

> Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

Ghost-free multi spin-2 theories

Consider N spin-2 fields $g_{\mu \nu}^{\prime}=\left(e_{l}\right)_{\mu}^{A}\left(e_{l}\right)_{\nu}^{B} \eta_{A B}$, with $I=1, \cdots, N$

Ghost-free multi spin-2 theories

Consider N spin-2 fields $g_{\mu \nu}^{\prime}=\left(e_{l}\right)^{A}\left(e_{l}\right)^{B}{ }_{\nu} \eta_{A B}$, with $I=1, \cdots, N$

1) Trivial case: Pairwise bimetric interactions:

$$
V\left(g^{1}, g^{2}\right)+V\left(g^{2}, g^{3}\right)+\cdots
$$

Ghost-free multi spin-2 theories

Consider N spin-2 fields $g_{\mu \nu}^{\prime}=\left(e_{l}\right)^{A}\left(e_{l}\right)^{B}{ }_{\nu} \eta_{A B}$, with $I=1, \cdots, N$

1) Trivial case: Pairwise bimetric interactions:

$$
V\left(g^{1}, g^{2}\right)+V\left(g^{2}, g^{3}\right)+\cdots
$$

2) Important step beyond pairwise: multivielbein interactions [K. Hinterbichler, R. A. Rosen (arXiv:1203.5783)]

Ghost-free multi spin-2 theories

Consider N spin-2 fields $g_{\mu \nu}^{\prime}=\left(e_{l}\right)^{A}\left(e_{l}\right)^{B}{ }_{\nu} \eta_{A B}$, with $I=1, \cdots, N$

1) Trivial case: Pairwise bimetric interactions:

$$
V\left(g^{1}, g^{2}\right)+V\left(g^{2}, g^{3}\right)+\cdots
$$

2) Important step beyond pairwise: multivielbein interactions [K. Hinterbichler, R. A. Rosen (arXiv:1203.5783)]
3) Generally, not ghost free except the pairwise bimetric cases [C. de Rham, A. J. Tolley (arXiv:1505.01450)]

Do genuine ghost-free multi spin-2 interaction exist?

Ghost-free multi spin-2 theories

[SFH, Angnis Schmidt-May (arXiv:1804.09723)]
Starting with simple pairwise interactions, genuine multi spin-2 interactions for $\left(e_{l}\right)^{A}{ }_{\mu}$ can be obtained:

$$
\sum_{l=1}^{N} m_{l}^{2} \sqrt{\left|g^{\prime}\right|} R\left(g^{l}\right)-M^{4} \operatorname{det}\left(\sum_{l=1}^{N} \beta^{\prime} e_{l}\right)
$$

Has the correct number of constraints to eliminate the ghosts.

Ghost-free multi spin-2 theories

[SFH, Angnis Schmidt-May (arXiv:1804.09723)]
Starting with simple pairwise interactions, genuine multi spin-2 interactions for $\left(e_{l}\right)_{\mu}^{A}$ can be obtained:

$$
\sum_{l=1}^{N} m_{l}^{2} \sqrt{\left|g^{\prime}\right|} R\left(g^{l}\right)-M^{4} \operatorname{det}\left(\sum_{l=1}^{N} \beta^{\prime} e_{l}\right)
$$

Has the correct number of constraints to eliminate the ghosts.
Relation to the multivielbein actions of Hinterbichler and Rosen:

$$
V=M^{4} \sum_{I, J, K, L=1}^{\mathcal{N}} \beta^{I J K L} \epsilon_{A B C D} e_{l}^{A} \wedge e_{J}^{B} \wedge e_{K}^{C} \wedge e_{L}^{D}
$$

For no ghosts: $\beta^{I J K L}=\beta^{I} \beta^{J} \beta^{K} \beta^{L}$ (Generalizations possible). Systematics of multispin-2 interactions?

Outline of the talk

> Introduction

> Motivation \& challenges

> Bimetric theory: gravity with an extra spin-2 field

> Uniqueness and the local structure of spacetime

> Ghost-free multi spin-2 theories

Discussion

Discussion

The beginning of understanding theories of spin-2 fields beyond General Relativity.

Discussion

The beginning of understanding theories of spin-2 fields beyond General Relativity.

- Causal structure (some progress)
- Superluminality? (yes, not necessarily harmful, replacement for inflation?)
- Forced mixings
- Systematics of multispin-2 interactions
- A more fundamental formulation (a la Higgs)
- Application to cosmology, blackholes, GW, etc.
- Extra symmetries \Rightarrow Modified kinetic terms? much less understood

Thank you!

EXTRA MATERIAL

Mass spectrum \& Limits

$$
\bar{f}=c^{2} \bar{g}, \quad g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}, \quad f_{\mu \nu}=\bar{f}_{\mu \nu}+\delta f_{\mu \nu}
$$

Linear modes:

Massless spin-2: $\quad \delta G_{\mu \nu}=\left(\delta g_{\mu \nu}+\frac{m_{1}^{2}}{m_{g}^{2}} \delta f_{\mu \nu}\right)$
Massive spin-2 : $\quad \delta M_{\mu \nu}=\left(\delta f_{\mu \nu}-c^{2} \delta g_{\mu \nu}\right)$
$g_{\mu \nu}, f_{\mu \nu}$ are mixtures of massless and massive modes
The General Relativity limit: $\quad m_{g}=M_{P}, \quad m_{f} / m_{g} \rightarrow 0$ (more later)

Massive gravity limit: $\quad m_{g}=M_{P}, \quad m_{f} / m_{g} \rightarrow \infty$

Can Bimetric be a fundamental theory?

- Similar to Proca theory in curved background,

$$
\sqrt{|\operatorname{det} g|}\left(F_{\mu \nu} F^{\mu \nu}-m^{2} g^{\mu \nu} A_{\mu} A_{\nu}+R_{g}\right)
$$

- May need the equivalent of Higgs mechanism with the extra fields for better quantum or even classical behaviour

GR limit

The General Relativity limit:

$$
m_{g}=M_{P}, \quad \alpha=m_{f} / m_{g} \rightarrow 0
$$

Cosmological solutions in the GR limi:

$$
3 H^{2}=\frac{\rho}{M_{P I}^{2}}-\frac{2}{3} \frac{\beta_{1}^{2}}{\beta_{2}} m^{2}-\alpha^{2} \frac{\beta_{1}^{2}}{3 \beta_{2}^{2}} H^{2}+\mathcal{O}\left(\alpha^{4}\right)
$$

The GR approximation breaks down at sufficiently strong fields

The Hojman-Kuchar-Teitelboim Metric

General Relativity in 3+1 decomposition ($g_{\mu \nu}: \gamma_{i j}, N, N_{i}$):

$$
\sqrt{g} R \sim \pi^{i j} \partial_{t} \gamma_{i j}-N R^{0}-N_{i} R^{i}
$$

Constraints: $R^{0}=0, R^{i}=0$.
Algebra of General Coordinate Transformations (GCT):

$$
\begin{aligned}
\left\{R^{0}(x), R^{0}(y)\right\} & =-\left[R^{i}(x) \frac{\partial}{\partial x^{\prime}} \delta^{3}(x-y)-R^{i}(y) \frac{\partial}{\partial y} \delta^{3}(x-y)\right] \\
\left\{R^{0}(x), R_{i}(y)\right\} & =-R^{0}(y) \frac{\partial}{\partial x^{\prime}} \delta^{3}(x-y) \\
\left\{R_{i}(x), R_{j}(y)\right\} & =-\left[R_{j}(x) \frac{\partial}{\partial x^{\prime}} \delta^{3}(x-y)-R_{i}(y) \frac{\partial}{\partial y} \delta^{3}(x-y)\right]
\end{aligned}
$$

$R_{i}=\gamma_{i j} R^{j}, \gamma_{i j}$: metric of spatial 3-surfaces.

- Any generally covariant theory contains such an algebra.
- HKT: The tensor that lowers the index on R^{i} is the physical metric of 3 -surfaces.

The HKT metric in bimetric theory

Consider $g_{\mu \nu}=\left(\gamma_{i j}, N, N_{i}\right)$ and $f_{\mu \nu}=\left(\phi_{i j}, L, L_{i}\right)$,

$$
\mathcal{L}_{g, f} \sim \pi^{i j} \gamma_{i j}+p^{i j} \phi_{i j}-M \tilde{R}^{0}-M_{i} \tilde{R}^{i}
$$

On the surface of second class Constraints. GCT Algebra:

$$
\begin{aligned}
\left\{\tilde{R}^{0}(x), \tilde{R}^{0}(y)\right\} & =-\left[\tilde{R}^{i}(x) \frac{\partial}{\partial x^{i}} \delta^{3}(x-y)-\tilde{R}^{i}(y) \frac{\partial}{\partial y^{\prime}} \delta^{3}(x-y)\right] \\
\left\{\tilde{R}^{0}(x), \tilde{R}_{i}(y)\right\} & =-\tilde{R}^{0}(y) \frac{\partial}{\partial x^{i}} \delta^{3}(x-y)
\end{aligned}
$$

$\tilde{R}_{i}=\phi_{i j} \tilde{R}^{j}, \phi_{i j}$: the 3-metric of $t_{\mu \nu}$, or
$\tilde{R}_{i}=\gamma_{i j} \tilde{R}^{j}, \gamma_{i j}$: the 3-metric of $g_{\mu \nu}$.
The HKT metric of bimetric theory is $g_{\mu \nu}$ or $f_{\mu \nu}$, consistent with ghost-free matter couplings
[SFH, A. Lundkvist [arXiv:1802.07267]]

Solution to the uniqueness problem of $V(S)$

Matrix square roots:

- Primary roots: Max 16 distinct roots, generic
- Nonprimary roots: Infinitely many, non-generic
(when eigenvalues in different Jordan blocks coincide)

General Covariance: $A_{\nu}^{\mu}=g^{\mu \rho} f_{\rho \nu}$ is a $(1,1)$ tensor,

$$
x^{\mu} \rightarrow \tilde{x}^{\mu} \Rightarrow A \rightarrow Q^{-1} A Q, \quad \text { for } \quad Q_{\nu}^{\mu}=\frac{\partial x^{\mu}}{\partial \tilde{x}^{\nu}}
$$

Uniqueness of S

$S_{\nu}^{\mu}=(\sqrt{A})^{\mu}{ }_{\nu}:$

- Primary roots: $\quad \sqrt{A} \rightarrow \sqrt{Q^{-1} A Q}=Q^{-1} \sqrt{A} Q$
- Nonprimary roots: $\sqrt{Q^{-1} A Q} \neq Q^{-1} \sqrt{A} Q$

Step 1:

General covariance \Rightarrow only primary roots are allowed.
A Consequence: Examples of backgrounds with local CTC's correspond to nonprimary roots and are excluded

Step 2:

Only the principal root is always primary. Hence, S must be a principle root.
(Nonprinciple roots degenerate to nonprimary roots when some eigenvalues coincide).

Choice of the square root

Reality + General Covariance \Rightarrow

* Real principal square root (unique),
* Compatible 3+1 decomposition

$$
h_{\mu \nu}=g_{\mu \rho}\left(\sqrt{g^{-1} f}\right)^{\rho}{ }_{\nu}
$$

h null-cones for the principal root (except for the last one)

Useful for choosing good coordinate systems,
The specific, existing local CTC's in massive gravity rulled out.

Ghost in Massive Gravity

$$
g_{\mu \nu}: \quad N, N_{i}(4), \gamma_{i j}=g_{i j}(6)
$$

General Relativity:

$$
\mathcal{L}_{g r}=\sqrt{g} R=\pi^{i j} \dot{\gamma}_{i j}-N R_{0}-N^{i} R_{i}
$$

$R_{0}=R_{i}=0, \mathrm{GCT} \Rightarrow 2$ polarizations
Massive Gravity:
$\mathcal{L}_{m g r}=\sqrt{g}\left(R-V\left(g^{-1} f\right)\right)=\pi^{i j} \dot{\gamma}_{i j}-N R_{0}-N^{i} R_{i}-\tilde{V}\left(N, N_{i}, \gamma, f\right)$
No constraints, no GCT $\Rightarrow 5$ polarizations + 1(BD ghost)
[Boulware, Deser (1972)]
Ghost free massive gravity: with a constraint.
[de Rham, Gabadadze, Tolley (2010)]
[SFH, Rosen (2011); SFH, Rosen, Schmidt-May (2011)]

