# High precision measurements of the differential W and Z/ $\gamma^*$ boson cross sections and tT/Z cross-section ratios in ATLAS

<u>Nataliia Zakharchuk</u> on behalf of the ATLAS collaboration



Low x 2017 Bisceglie, Italy 13/06/2017

## **Analyses overview**



Good agreement between theory and data

• High precision of experimental and theoretical measurements:

- current level of understanding up to NNLO
- test of SM model, understanding of pQCD and electroweak (EW) processes
- Probe the proton at different average x values  $\rightarrow$  PDF constraints

N. Zakharchuk

W, Z/ $\gamma^*$  precision measurements,  $t\bar{t}/Z$  ratios

4.6 fb<sup>-1</sup>, **7 TeV** 

### **Inclusive W<sup>+</sup>, W<sup>-</sup> and Z/** $\gamma$ \* production cross sections

Eur. Phys. J. C 77 (2017) 367

- Integrated and differential cross sections
- Ratios of W/Z boson cross sections
- Comparison with theoretical predictions
- Lepton universality
- New PDF set
- Strange-quark density determination

# W and Z production and ratios

- Drell-Yan dilepton production of W and Z bosons is a clear signature:
  - Iarge statistics
  - small background contamination
- Different quark combinations contribute to Z and W processes
  - Sensitivity to **u** and **d** quarks:  $\overline{u}d \rightarrow W^ u\overline{d} \rightarrow W^+$   $d\overline{d} \rightarrow Z$

• <u>Ratios</u>:

- $W^+/W^-$ : sensitive to difference of  $u_v$  and  $d_v$  valence-quark distributions
- W/Z: sensitive to strange-quark distribution
- offer cancelation of systematics uncertainties
- potential to improve quark PDFs



# W and Z cross-section definitions

### Fiducial and total cross sections:



Fiducial phase space:

|                                         | W       | Z            |                                                                    |  |  |  |  |
|-----------------------------------------|---------|--------------|--------------------------------------------------------------------|--|--|--|--|
|                                         |         | central (CC) | forward (electrons) (CF)                                           |  |  |  |  |
| <b>р</b> <sub>Т,<i>ℓ</i>,<i>∨</i></sub> | >25 GeV | >20 GeV      | >20 GeV                                                            |  |  |  |  |
| $\eta_{\ell}$                           | 2.5     | 2.5          | 2.5 ( <i>l</i> <sub>1</sub> ) or 2.5-4.9 ( <i>l</i> <sub>2</sub> ) |  |  |  |  |
| m <sub>T</sub> (m <sub>ℓℓ</sub> )       | >40 GeV | 46-150GeV    | 66-150 GeV                                                         |  |  |  |  |

#### Differential cross sections

- $W^{\pm} \rightarrow \ell v$ : pseudorapidity bins,  $|\eta_{\ell}|$
- ►  $Z/\gamma^* \rightarrow \ell\ell$ : rapidity bins,  $|y_{\ell\ell}|$ , in three mass regions  $m_{\ell\ell} = [46, 66, 116, 150]$  GeV

# W and Z kinematic distributions



N. Zakharchuk

precision measurements. tt/Z ratios

# W and Z integrated cross sections

- Fiducial integrated cross sections of W and Z production in electron and muon channels were combined
- Most precise vector boson measurements:
  - $\rightarrow$  Z (W) cross section is 10 (3.5) times precise then previous results (arXiv:1109.5141)
  - ✓ 0.32% for Z boson

+ 1.8 % luminosity uncertainty

- ✓ 0.5% (0.6%) for W<sup>+</sup>(W<sup>-</sup>) bosons
- Main systematics contributions to the measurements:
  - Reconstruction efficiencies of the leptons (<0.3% for Z <0.2% for W)
  - W signal modelling (<0.64%)</p>
  - Background estimation (<0.72 for W and 0.14% for Z)

|                            | $\sigma^{\rm fid}_{W \to \ell \nu}   [{\rm pb}]$                                |
|----------------------------|---------------------------------------------------------------------------------|
| $W^+ \to e^+ \nu$          | $2939 \pm 1 (\text{stat}) \pm 28 (\text{syst}) \pm 53 (\text{lumi})$            |
| $W^+ \to \mu^+ \nu$        | $2948 \pm 1 ({\rm stat}) \pm 21 ({\rm syst}) \pm 53 ({\rm lumi})$               |
| $W^+ \to \ell^+ \nu$       | $2947 \pm 1 ({ m stat}) \pm 15 ({ m syst}) \pm 53 ({ m lumi})$                  |
| $W^- \to e^- \bar{\nu}$    | $1957 \pm 1 ({\rm stat}) \pm 21 ({\rm syst}) \pm 35 ({\rm lumi})$               |
| $W^- 	o \mu^- \bar{\nu}$   | $1964 \pm 1 ({\rm stat}) \pm 13 ({\rm syst}) \pm 35 ({\rm lumi})$               |
| $W^- \to \ell^- \bar{\nu}$ | $1964 \pm 1 ({\rm stat}) \pm 11 ({\rm syst}) \pm 35 ({\rm lumi})$               |
| $W \to e\nu$               | $4896 \pm 2 (\text{stat}) \pm 49 (\text{syst}) \pm 88 (\text{lumi})$            |
| $W 	o \mu \nu$             | $4912 \pm 1 (\text{stat}) \pm 32 (\text{syst}) \pm 88 (\text{lumi})$            |
| $W \to \ell \nu$           | $4911 \pm 1 ({\rm stat}) \pm 26 ({\rm syst}) \pm 88 ({\rm lumi})$               |
|                            | $\sigma_{Z/\gamma^* \to \ell\ell}^{\rm fid}  [{\rm pb}]$                        |
| $Z/\gamma^* \to e^+e^-$    | $502.7 \pm 0.5 (\text{stat}) \pm 2.0 (\text{syst}) \pm 9.0 (\text{lumi})$       |
| $Z/\gamma^* 	o \mu^+\mu^-$ | $501.4 \pm 0.4 (\mathrm{stat}) \pm 2.3 (\mathrm{syst}) \pm 9.0 (\mathrm{lumi})$ |
| $Z/\gamma^* \to \ell\ell$  | $502.2 \pm 0.3 (\mathrm{stat}) \pm 1.7 (\mathrm{syst}) \pm 9.0 (\mathrm{lumi})$ |

N. Zakharchuk

# Lepton universality



- Ratio of the electron-to-muon ratios for W and Z bosons
  - Good agreement with Standard Model
    - ▶ R<sub>w</sub>: more precise measurement than the combination of LEP results from e<sup>+</sup>e<sup>-</sup>→W<sup>+</sup>W<sup>-</sup> data
    - ► R<sub>z</sub>: good agreement with e<sup>+</sup>e<sup>-</sup>→Z LEP and SLC data
  - ✓ R<sub>w</sub> and R<sub>Z</sub> measurements confirm
     lepton universality in the weak vectorboson decays

# **Comparison with the predictions**



### Predictions:

- NNLO pQCD: DYNNLO1.5 and FEWZ3.1b2
- NLO EWK corrections: MCSANC1.2 (ISR photon, EW loop correction and etc.)
- ► Data measurements are more precise then predictions → constrain power
- Predictions for different PDF sets are lower then data

### Ratios

- ► W<sup>+</sup>/W<sup>-</sup>: described by predictions
- **W/Z:** predictions are higher than data
  - ✓ Comparable with W/Z ratio at 13 TeV (Phys.Lett. B759)



# W and Z differential cross sections



• The electron and muon channels were combined:  $\chi^2/n.d.f = 59.5/53$ 

- Precision of combined differential cross sections:
  - ✓ 0.4-0.6% for the W+ and W- and central Z peak measurements

Cross sections are compared to NNLO pQCD predictions

- **W**: good description by ABM12 and other predictions are below data
  - the difference for many PDF do not exceed luminosity uncertainty
- **Z:** all predictions are below the data

N. Zakharchuk

 $\gamma^*$  precision measurements, tt/Z ratios

# Interpretation of results



### **PDF constrains**

- Impact of measurements on given PDF is estimated using profiling:
  - significantly reduced uncertainties
  - central value increased towards unity at x~0.023

- strange quark is significantly increased with reduced uncertainties
- significant reduction on the relative uncertainty of xuv distribution

N. Zakharchuk

# **QCD** analysis

- Measurements are combined with final (DIS) HERA I+II data: ATLAS-epWZ16
  - more sensitivity light-quark composition at low x
  - reduced uncertainties



N. Zakharchuk

3.2, 20.3, 4.6 fb<sup>-1</sup> - **13, 8, 7 TeV** 

### **Top-quark pair to Z-boson cross-section ratios**

JHEP 1702 (2017) 117 arXiv:1612.03636

- New Z boson cross section at 13 TeV
- Fiducial and total cross sections
- Comparison with theoretical predictions
- Correlation model of all measurements
- Various ratios at  $\sqrt{s} = 13, 8, 7$  TeV
- PDF contraints

### **Top-quark pair to Z-boson cross-section ratios**

 $R_{t\bar{t}/Z} = \frac{\sigma_{t\bar{t}}}{0.5(\sigma_{7,x} + \sigma_{7,x})}$ 





- Z production is more sensitive to qq
  - sensitive to gluon-to-quark PDF ratio
  - cancellations in experimental and theoretical uncertainties: (luminosity and lepton-related systematic uncertainties)
- →  $R_{t\bar{t}/Z}^{tot/fid}$  (i TeV) at the same  $\sqrt{s}$
- $\Rightarrow R_{Z_i/Z_j}^{fid}, R_{t\bar{t}_i/t\bar{t}_j}^{tot}$  given process at the different  $\sqrt{s}$
- Double ratio: at different center-of-mass energies \s:

 $R_{t\bar{t}/Z}^{tot/fid}(i)/R_{t\bar{t}/Z}^{tot/fid}(j)$ , where i, j = 13, 8, 7 TeV

- comparison of the data and theory predictions
- double ratios serve as precision tests of the SM predictions
  - Iuminosity independent cross-check

# **Analysis measurements**

#### Use previous published results:

- > Z boson cross sections at  $\sqrt{s} = 7$ , 8 TeV (*Eur. Phys. J. C* 77 (2017) 367, *Eur. Phys. J.* C 76(5), 1-61 (2016)) and top quark pair cross sections at  $\sqrt{s} = 7$ , 8 and 13 TeV (Eur. Phys. J. C74 (2014) 3109; Eur. Phys. J. C76 (2016) 642, Phys. Lett. B761 (2016) 136)
- new measurement: Z boson cross section at  $\sqrt{s} = 13$  TeV
- Event and lepton selection for Z analysis was fully consistent with tt

• Common fiducial phase space for all Z



Signal MC: Powheg+Pythia

Background estimation:

- EW & tt from MC
- QCD multi-jet: data-driven
  - ▶ total: ~0.5%
  - ▶ sum of all EW: ~0.2%
  - multijet: < 0.1%</p>
  - main contribution: tt

N. Zakharchuk

GeV

Entries /

# Input to ratios

| Th | eoret | tical | pred | ict | ions |
|----|-------|-------|------|-----|------|
|    |       |       |      |     |      |

|                          | $\sigma_Z^{ m fid}$ |                  |                  | $\sigma_{t\bar{t}}^{ m tot}$ |                  |                  |  |
|--------------------------|---------------------|------------------|------------------|------------------------------|------------------|------------------|--|
| $\sqrt{s}  [\text{TeV}]$ | 13                  | 8                | 7                | 13                           | 8                | 7                |  |
| Central value [pb]       | 744                 | 486              | 432              | 842                          | 259              | 182              |  |
| Uncertainties [%]        |                     |                  |                  |                              |                  |                  |  |
| PDF                      | $^{+2.7}_{-3.4}$    | $^{+2.5}_{-3.1}$ | $^{+2.5}_{-3.0}$ | $+2.6 \\ -2.7$               | $^{+3.9}_{-3.4}$ | $^{+4.4}_{-3.7}$ |  |
| $lpha_{ m S}$            | $^{+0.9}_{-1.1}$    | $^{+1.0}_{-0.8}$ | $^{+1.0}_{-0.7}$ | $+1.9 \\ -1.8$               | $^{+2.1}_{-2.1}$ | $^{+2.2}_{-2.1}$ |  |
| Scale                    | $^{+0.5}_{-0.8}$    | $^{+0.5}_{-0.5}$ | $^{+0.7}_{-0.3}$ | $+2.4 \\ -3.6$               | $^{+2.6}_{-3.5}$ | $^{+2.6}_{-3.5}$ |  |
| Intrinsic $Z$            | $^{+0.7}_{-0.7}$    | $^{+0.7}_{-0.7}$ | $^{+0.7}_{-0.7}$ | N/A                          | N/A              | N/A              |  |
| $m_t$                    | N/A                 | N/A              | N/A              | $+2.8 \\ -2.7$               | $^{+3.0}_{-2.9}$ | $+3.1 \\ -3.0$   |  |
| Total                    | $+3.0 \\ -3.7$      | $+2.8 \\ -3.3$   | $+2.9 \\ -3.2$   | +5 -6                        | $^{+6}_{-6}$     | $^{+6}_{-6}$     |  |

- Z cross sections calculations:
  - NNLO QCD with DYNNLO 1.5
  - NLO EW corrections with Fewz 3.1
- <u>tī cross sections calculations:</u>
  - ▶ NNLO+NNLL QCD with Top++v2.0
  - only total cross section available
- $\checkmark$  CT14 PDF set is used as the baseline

 $\rightarrow$  main contribution on uncertainty: PDF (for both) + Scale (tt)

| $\sqrt{s}$ [TeV] | Value $\pm$ stat $\pm$ syst $\pm$ beam $\pm$ lumi [pb]                     |
|------------------|----------------------------------------------------------------------------|
|                  | $\sigma_Z^{ m fid}$                                                        |
| 13               | $777 \pm 1 \ (0.1\%) \pm 3 \ (0.4\%) \pm 5 \ (0.7\%) \pm 16 \ (2.1\%)$     |
| 8                | $506 \pm < 1 \ (< 0.1\%) \pm 3 \ (0.6\%) \pm 3 \ (0.6\%) \pm 10 \ (1.9\%)$ |
| 7                | $451 \pm < 1 \ (0.1\%) \pm 1 \ (0.3\%) \pm 3 \ (0.6\%) \pm 8 \ (1.8\%)$    |
|                  | $\sigma_{tar{t}}^{ m tot}$                                                 |
| 13               | $818 \pm 8 (0.9\%) \pm 27 (3.3\%) \pm 12 (1.5\%) \pm 19 (2.3\%)$           |
| 8                | $243 \pm 2 (0.7\%) \pm 5 (2.3\%) \pm 4 (1.7\%) \pm 5 (2.1\%)$              |
| 7                | $183 \pm 3 (1.7\%) \pm 4 (2.3\%) \pm 3 (1.8\%) \pm 4 (2.0\%)$              |

#### <u>Data</u>

- Combined cross sections
  - all data is dominated by systematic uncertainty
- Largest sources of uncertainty:
  - Iuminosity, beam energy, signal modelling (tt)

# **Correlation model**

#### Comparison with the predictions using correlation model



- The correlation of measured cross section is opposite sign to predicted (the same for 7 and 8 TeV)
  - discriminative input to determination of PDF

|                              | $\delta \; \sigma_Z^{ m fid}$ |                |   | $\delta \; \sigma_{t \overline{t}}^{ m tot}$ |              |   |  |
|------------------------------|-------------------------------|----------------|---|----------------------------------------------|--------------|---|--|
| Source / $\sqrt{s}$ [TeV]    | 13                            | 8              | 7 | 13                                           | $8^{\iota}$  | 7 |  |
| Luminosity                   | А                             | В              | С | А                                            | В            | С |  |
| Beam energy                  | А                             | А              | А | А                                            | А            | А |  |
| Muon (lepton) trigger        | Α                             | $\mathbf{A}^*$ | А | А                                            | В            | В |  |
| Muon reconstruction/ID       | A                             | В              | С | А                                            | D            | D |  |
| Muon isolation               | A                             | А              | А | В                                            | $\mathbf{C}$ | D |  |
| Muon momentum scale          | Α                             | А              | А | А                                            | А            | А |  |
| Electron trigger             | A                             | А              | А | А                                            |              |   |  |
| Electron reconstruction/ID   | A                             | В              | С | А                                            | D            | D |  |
| Electron isolation           | A                             | А              |   | В                                            | $\mathbf{C}$ | D |  |
| Electron energy scale        | Α                             | А              | А | А                                            | А            | А |  |
| Jet energy scale             |                               |                |   | А                                            | В            | В |  |
| b-tagging                    |                               |                |   | А                                            | В            | В |  |
| Background                   | A                             | А              | А | В                                            | В            | В |  |
| Signal modelling (incl. PDF) | A                             | А              | А | $B^*$                                        | В            | В |  |

- the same row and letter: fully correlated
- with started letter: mostly correlated
- different rows: uncorrelated

# **Top-quark pair to Z cross-section ratios**

Single ratios at given  $\sqrt{s}$ 







- ATLAS data are more precise than most of the theory predictions
- Iuminosity uncertainty almost cancels
- smallest data uncertainty: 8 TeV ratio
- 13 TeV and 8 TeV data are most consistent with ATLAS-epWZ12 and HERAPDF2.0
- 7 TeV most consistent with MMHT14

# **Cross-section ratios for given process**

#### Single ratios at different √s







Z: - uncertainty is dominated by luminosity

- measurements are consistent with the predictions for all PDF sets within experimental uncertainties
- Iuminosity-determination uncertainty in the measured ratio is <u>conservative</u>
- tt: ABM12 prediction is largest
  - PDF4LHC PDFs are smallest
  - agree with the prediction within

experimental uncertainties

N. Zakharchuk

# **Double ratios**

### **Double ratios at different** $\sqrt{s}$







- Almost complete cancelation of the luminosity uncertainty
- 13/8 TeV: within 1 $\sigma$ , most predictions below the data
- 13/7 TeV: within  $1\sigma$ , most predictions above the data
- 8/7 TeV: 3-4 σ deviation vs predictions. Dominant experimental uncertainty: statistical error of 7 TeV sample.
  - not described by PDFs
  - difficult to ascribe to x-dependence of gluon distribution

## **Quantitive comparison with predictions**



Predictions based on HERAPDF2.0 and ATLAS-epWZ12 PDF sets have good compatibility with the ATLAS data

|                     | ATLAS-epWZ12 | CT14   | MMHT14 | NNPDF3.0 | HERAPDF2.0 | ABM12   |
|---------------------|--------------|--------|--------|----------|------------|---------|
| $\chi^2/\text{NDF}$ | 8.3 / 6      | 15 / 6 | 13 / 6 | 17 / 6   | 10 / 6     | 25 / 6  |
| p-value             | 0.22         | 0.02   | 0.05   | 0.01     | 0.11       | < 0.001 |

# **PDF constraints**

 The impact of the ATLAS data on the PDF uncertainties is quantified by using PDF profiling for ATLAS-epWZ12 PDF



#### **Gluon distributions**

- $\checkmark$  tt and Z data constrain gluon distribution at x ~ 0.1
- ✓ central values agree very well
- ✓ profiling was also performed with excluded tt data 7 TeV and yielded similar results

# Summary

- Inclusive Drell-Yan production measurements performed by ATLAS has reached a sub-percent level of uncertainty
  - opportunity to understand the structure of proton and to test SM model predictions
  - impact of new data on the determination of the strange-quark distribution
  - confirmed unsuppressed strangeness
  - new test of elector-muon universality

 Benefits from the ratios: provide the cancelation of the experimental and theoretical systematics uncertainties

- $\blacktriangleright$  excellent agreement between Z-boson cross-section ratios and predictions at various  $\sqrt{s}$  (omitting luminosity)
- significant power to constrain gluon PDF from top-quark pair to Z-boson ratio

✓ A few 13 TeV vector boson production measurements have already been performed (W,Z inclusive cross sections, Z+jet at √s = 13 TeV (<u>Eur. Phys. J. C77</u> (2017) 361)), and more will follow. Stay tuned!

# Thank you for your attention!

Backup slides

# Z boson

- Illustration of different  $q\bar{q}$  contributing at LO QCD to the measured differential  $Z/\gamma^* \rightarrow \ell\ell$  cross sections in the different mass regions
- The prediction is obtained from the Powheg+Pythia
- No event selection is performed



# W/Z: Multi-jet background (electrons)



- Template fit using discriminative variable:  $E_T^{miss}$  ( $E_T^{cone}/p_T$ ) for W(Z) boson
  - control region: relaxed  $E_T$  and  $m_T$  requirements
  - template: inverted identification requirement and requirement to have not isolated electron

# W/Z: Multi-jet background (muons)



- W template: inverted isolation requirement, no requirement on  $E_T^{miss}$
- Z template: combined same-charge data events and simulated heavy-flavour events (with subtracted same-charge fraction)

### W/Z: Combined differential cross sections



• Precision of the combined cross sections: 0.4 - 0.6% for  $W^+$  and  $W^-$ 

### W/Z Combined differential cross sections



- Precision of the combined cross sections: 0.4 0.6% for Z peak measurements
- Off-peak: few percent of uncertainty

# W/Z: Systematic uncertainties and ratio

#### **Electron channel**

#### Muon channel

|                                                    | $\delta\sigma_{W+}$ | $\delta\sigma_{W-}$ | $\delta\sigma_Z$ | $\delta\sigma_{	ext{forward }Z}$ |                                                    | $\delta\sigma_{W+}$ | $\delta\sigma_{W-}$ | $\delta\sigma_Z$ |
|----------------------------------------------------|---------------------|---------------------|------------------|----------------------------------|----------------------------------------------------|---------------------|---------------------|------------------|
|                                                    | [%]                 | [%]                 | [%]              | [%]                              |                                                    | [%]                 | [%]                 | [%]              |
| Trigger efficiency                                 | 0.03                | 0.03                | 0.05             | 0.05                             | Trigger efficiency                                 | 0.08                | 0.07                | 0.05             |
| Reconstruction efficiency                          | 0.12                | 0.12                | 0.20             | 0.13                             | Reconstruction efficiency                          | 0.19                | 0.17                | 0.30             |
| Identification efficiency                          | 0.09                | 0.09                | 0.16             | 0.12                             | Isolation efficiency                               | 0.10                | 0.09                | 0.15             |
| Forward identification efficiency                  | _                   | _                   | _                | 1.51                             | Muon $p_{\rm T}$ resolution                        | 0.01                | 0.01                | < 0.01           |
| Isolation efficiency                               | 0.03                | 0.03                | _                | 0.04                             | Muon $p_{\rm T}$ scale                             | 0.18                | 0.17                | 0.03             |
| Charge misidentification                           | 0.04                | 0.06                | _                | _                                | $E_{\rm T}^{\rm miss}$ soft term scale             | 0.19                | 0.19                | —                |
| Electron $p_{\rm T}$ resolution                    | 0.02                | 0.03                | 0.01             | 0.01                             | $E_{\rm T}^{\rm miss}$ soft term resolution        | 0.10                | 0.09                | —                |
| Electron $p_{\rm T}$ scale                         | 0.22                | 0.18                | 0.08             | 0.12                             | Jet energy scale                                   | 0.09                | 0.12                | —                |
| Forward electron $p_{\rm T}$ scale + resolution    | _                   | _                   | _                | 0.18                             | Jet energy resolution                              | 0.11                | 0.16                | —                |
| $E_{\rm T}^{\rm miss}$ soft term scale             | 0.14                | 0.13                | _                | _                                | Signal modelling (matrix-element generator)        | 0.12                | 0.06                | 0.04             |
| $E_{\rm T}^{\rm miss}$ soft term resolution        | 0.06                | 0.04                | _                | _                                | Signal modelling (parton shower and hadronization) | 0.14                | 0.17                | 0.22             |
| Jet energy scale                                   | 0.04                | 0.02                | _                | _                                | PDF                                                | 0.09                | 0.12                | 0.07             |
| Jet energy resolution                              | 0.11                | 0.15                | _                | _                                | Boson $p_{\rm T}$                                  | 0.18                | 0.14                | 0.04             |
| Signal modelling (matrix-element generator)        | 0.57                | 0.64                | 0.03             | 1.12                             | Multijet background                                | 0.33                | 0.27                | 0.07             |
| Signal modelling (parton shower and hadronization) | 0.24                | 0.25                | 0.18             | 1.25                             | Electroweak+top background                         | 0.19                | 0.24                | 0.02             |
| PDF                                                | 0.10                | 0.12                | 0.09             | 0.06                             | Background statistical uncertainty                 | 0.03                | 0.04                | 0.01             |
| Boson $p_{\rm T}$                                  | 0.22                | 0.19                | 0.01             | 0.04                             | Unfolding statistical uncertainty                  | 0.03                | 0.03                | 0.02             |
| Multijet background                                | 0.55                | 0.72                | 0.03             | 0.05                             | Data statistical uncertainty                       | 0.04                | 0.04                | 0.08             |
| Electroweak+top background                         | 0.17                | 0.19                | 0.02             | 0.14                             | Total experimental uncertainty                     | 0.61                | 0.59                | 0.43             |
| Background statistical uncertainty                 | 0.02                | 0.03                | < 0.01           | 0.04                             | Luminosity                                         |                     | 1.8                 |                  |
| Unfolding statistical uncertainty                  | 0.03                | 0.04                | 0.04             | 0.13                             |                                                    |                     |                     |                  |
| Data statistical uncertainty                       | 0.04                | 0.05                | 0.10             | 0.18                             |                                                    |                     |                     |                  |
| Total experimental uncertainty                     | 0.94                | 1.08                | 0.35             | 2.29                             |                                                    |                     |                     |                  |
| Luminosity                                         |                     |                     | 1.8              |                                  |                                                    |                     |                     |                  |

### **Ratio values**

| ptot                    |                                                                                |
|-------------------------|--------------------------------------------------------------------------------|
| $R_{W^+/W^-}^{\rm tot}$ | $1.450 \pm 0.001 (\text{stat}) \pm 0.004 (\text{syst}) \pm 0.029 (\text{acc})$ |
|                         |                                                                                |
| $R_{\rm m}^{\rm tot}$   | $10.83 \pm 0.01$ (stat) $\pm 0.05$ (syst) $\pm 0.09$ (acc)                     |
| $\Gamma V_W/Z$          | $10.00 \pm 0.01$ ( $50.00$ ) $\pm 0.00$ ( $35.0$ ) $\pm 0.00$ ( $acc)$         |
| $R^{\mathrm{tot}}$      | $6.407 \pm 0.004$ (stat) $\pm 0.032$ (syst) $\pm 0.062$ (acc)                  |
| $^{I}$ $^{W+}/Z$        | $0.401 \pm 0.004 (3000) \pm 0.002 (3930) \pm 0.002 (acc)$                      |
| $\mathbf{D}$ tot '      | $4.410 \pm 0.002$ (stat) $\pm 0.024$ (suct) $\pm 0.082$ (see)                  |
| $n_{W^-/Z}$             | $4.419 \pm 0.005 (\text{stat}) \pm 0.024 (\text{syst}) \pm 0.062 (\text{acc})$ |
| /                       |                                                                                |

N. Zakharchuk

Low x 2017 **31** 



Basic settings of the central NNLO QCD fit

| Parameter                 | Value                |
|---------------------------|----------------------|
| Starting scale, Q02       | 1.9 GeV <sup>2</sup> |
| mc                        | 1.43 GeV             |
| m <sub>b</sub>            | 4.5 GeV              |
| $lpha_{\sf s}({\sf m_Z})$ | 0.118                |
|                           |                      |

Parametrization used to describe Parton distributions

$$\begin{aligned} xu_{v}(x) &= A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}(1+E_{u_{v}}x^{2}) \\ xd_{v}(x) &= A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}} \\ x\bar{u}(x) &= A_{\bar{u}}x^{B_{\bar{u}}}(1-x)^{C_{\bar{u}}} \\ x\bar{d}(x) &= A_{\bar{d}}x^{B_{\bar{d}}}(1-x)^{C_{\bar{d}}} \\ xg(x) &= A_{g}x^{B_{g}}(1-x)^{C_{g}} - A'_{g}x^{B'_{g}}(1-x)^{C'_{g}} \\ x\bar{s}(x) &= A_{\bar{s}}x^{B_{\bar{s}}}(1-x)^{C_{\bar{s}}}. \end{aligned}$$

where  $A_{\overline{u}} = A_{\overline{d}}$  and  $B_{\overline{s}} = B_{\overline{d}} = B_{\overline{u}}$ 

### W/Z CKM matrix element



✓ Determined CKM matrix element |V<sub>cs</sub>|

Precision is comparable with results from charm meson decays

### **Summary of measurements of ATLAS+CMS**

• Summary of measurements of the top-pair production cross-section at 7, 8 and 13 TeV







# $2D\,68\%\,CL\,contours\,of\,\sigma_{Z}^{fid}\,vs\,\sigma_{tt}^{tot}$

• Two-dimensional 68% CL contours of  $\sigma_z^{fid}$  vs  $\sigma_{tt}^{tot}$  for 8 and 7 TeV



#### Correlation coefficients

|                   | Z 13 TeV | $t\bar{t}$ 13 TeV | Z 8 TeV | $t\bar{t}$ 8 TeV | Z 7 TeV | $t\bar{t}$ 7 TeV |
|-------------------|----------|-------------------|---------|------------------|---------|------------------|
| Z 13 TeV          | 1.00     | 0.61              | 0.10    | 0.16             | 0.10    | 0.15             |
| $t\bar{t}$ 13 TeV | -        | 1.00              | 0.11    | 0.32             | 0.11    | 0.31             |
| Z 8 TeV           | -        | -                 | 1.00    | 0.68             | 0.10    | 0.14             |
| $t\bar{t}$ 8 TeV  | -        | -                 | -       | 1.00             | 0.15    | 0.54             |
| Z 7 TeV           | -        | -                 | -       | -                | 1.00    | 0.62             |
| $t\bar{t}$ 7 TeV  | -        | -                 | -       | -                | -       | 1.00             |

N. Zakharchuk

W, Z/ $\gamma^*$  precision measurements, tt/Z ratios

Low x 2017 **35** 

# **Single ratios**



N. Zakharchuk

W,  $Z/\gamma^*$  precision measurements,  $t\bar{t}/Z$  ratios

# **PDF** profiling

- Using the **xFitter** tool
- $\chi^2$  function is defined:

$$\begin{split} \chi^{2}(\beta_{\exp},\beta_{th}) &= \\ \sum_{i=1}^{N_{data}} \frac{\left(\sigma_{i}^{\exp} + \sum_{j} \Gamma_{ij}^{\exp} \beta_{j,\exp} - \sigma_{i}^{th} - \sum_{k} \Gamma_{ik}^{th} \beta_{k,th}\right)^{2}}{\Delta_{i}^{2}} \\ &+ \sum_{j} \beta_{j,\exp}^{2} + \sum_{k} \beta_{k,th}^{2}. \end{split}$$

 $\sigma_i^{\exp}, \sigma_i^{th}$  – measurements and theoretical predictions  $\vec{\beta}_{\exp}, \vec{\beta}_{th}$  – nuisance parameters vectors including correlated experimental and theoretical uncertainties  $\Gamma_{ij}^{\exp}, \Gamma_{ik}^{th}$  – influnce of  $\vec{\beta}_{\exp}$  and  $\vec{\beta}_{th}$  on data and theory predictions

• The  $\chi^2$  minimisation yields the optimal values of the  $\beta_{k,th}$  shifts and the relative reduction of the PDF uncertainties

### **PDF constraints**



The total light-quark-sea distribution:

- the profiled PDF set is divided by the central value of ATLAS-epWZ12 PDF set
- relative uncertainty

## Systematic uncertainties and correlations

#### • **Relative systematics uncertainties** for Z-boson and tt production at 13, 8 and 7 TeV

|                                   |     | $\delta \sigma_Z^{\rm fid}$ |     |     | $\delta \sigma_{t\bar{t}}^{\rm tot}$ |     |
|-----------------------------------|-----|-----------------------------|-----|-----|--------------------------------------|-----|
| Systematic [%] / $\sqrt{s}$ [TeV] | 13  | 8                           | 7   | 13  | $8^{\iota\iota}$                     | 7   |
| Luminosity                        | 2.1 | 1.9                         | 1.8 | 2.3 | 2.1                                  | 2.0 |
| Beam energy                       | 0.7 | 0.6                         | 0.6 | 1.5 | 1.7                                  | 1.8 |
| Muon (lepton) trigger             | 0.1 | 0.6                         | 0.1 | 0.1 | 0.2                                  | 0.2 |
| Muon reconstruction/ID            | 0.7 | 0.5                         | 0.3 | 0.4 | 0.4                                  | 0.3 |
| Muon isolation                    | 0.4 | 0.0                         | 0.2 | 0.3 | 0.2                                  | 0.4 |
| Muon momentum scale               | 0.1 | 0.0                         | 0.0 | 0.0 | 0.0                                  | 0.1 |
| Electron trigger                  | 0.0 | 0.2                         | 0.0 | 0.1 |                                      |     |
| Electron reconstruction/ID        | 0.4 | 0.8                         | 0.3 | 0.3 | 0.4                                  | 0.1 |
| Electron isolation                | 0.1 | 0.0                         |     | 0.4 | 0.3                                  | 0.6 |
| Electron energy scale             | 0.3 | 0.1                         | 0.1 | 0.2 | 0.5                                  | 0.2 |
| Jet energy scale                  |     |                             |     | 0.4 | 0.7                                  | 0.4 |
| b-tagging                         |     |                             |     | 0.5 | 0.4                                  | 0.5 |
| Background                        | 0.1 | 0.2                         | 0.1 | 1.1 | 1.0                                  | 1.0 |
| Signal modelling (incl. PDF)      | 0.1 | 0.1                         | 0.3 | 3.0 | 1.7                                  | 1.8 |

• The correlation coefficients amongst the combined Z-boson and  $t\overline{t}$  fiducial and total

cross-section measurements

|                   | Z 13 TeV | $t\bar{t}$ 13 TeV | Z 8 TeV | $t\bar{t}$ 8 TeV | Z 7 TeV | $t\bar{t}$ 7 TeV |
|-------------------|----------|-------------------|---------|------------------|---------|------------------|
| Z 13 TeV          | 1.00     | 0.61              | 0.10    | 0.16             | 0.10    | 0.15             |
| $t\bar{t}$ 13 TeV | -        | 1.00              | 0.11    | 0.32             | 0.11    | 0.31             |
| Z 8 TeV           | -        | -                 | 1.00    | 0.68             | 0.10    | 0.14             |
| $t\bar{t}$ 8 TeV  | -        | -                 | -       | 1.00             | 0.15    | 0.54             |
| Z 7 TeV           | -        | -                 | -       | -                | 1.00    | 0.62             |
| $t\bar{t}$ 7 TeV  | -        | -                 | -       | -                | -       | 1.00             |

Low x 2017 **39** 

### Ratios at 13, 8 and 7 TeV

### **Single ratios**

|                            | $\sigma^{ m tot}/\sigma^{ m tot}$                                   | $\sigma^{ m tot}/\sigma^{ m fid}$                                   | $\sigma^{ m fid}/\sigma^{ m fid}$                                              |
|----------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                            | Value $\pm$ stat $\pm$ syst $\pm$ lumi                              | Value $\pm$ stat $\pm$ syst $\pm$ lumi                              | Value $\pm$ stat $\pm$ syst $\pm$ lumi                                         |
| $t\bar{t}/Z(13)$           | $0.416 \pm 0.004 \ (0.9\%) \pm 0.016 \ (3.8\%) \pm 0.001 \ (0.2\%)$ | $1.053 \pm 0.010 \ (0.9\%) \pm 0.036 \ (3.4\%) \pm 0.002 \ (0.2\%)$ | $0.01280\pm0.00012(0.9\%)\pm0.00033(2.6\%)\pm0.00003(0.2\%)$                   |
| $t\bar{t}/Z(8)$            | $0.211 \pm 0.001 \ (0.7\%) \pm 0.007 \ (3.1\%) \pm 0.000 \ (0.2\%)$ | $0.480 \pm 0.003 \ (0.7\%) \pm 0.012 \ (2.6\%) \pm 0.001 \ (0.2\%)$ | $0.00602 \pm 0.00004 \; (0.7\%) \pm 0.00014 \; (2.4\%) \pm 0.00001 \; (0.2\%)$ |
| $t\bar{t}/Z(7)$            | $0.184 \pm 0.003 \ (1.7\%) \pm 0.006 \ (3.1\%) \pm 0.000 \ (0.2\%)$ | $0.406 \pm 0.007 \ (1.7\%) \pm 0.011 \ (2.6\%) \pm 0.001 \ (0.2\%)$ | $0.00511\pm 0.00009(1.7\%)\pm 0.00013(2.5\%)\pm 0.00001(0.2\%)$                |
| Z(13)/Z(8)                 | $1.707 \pm 0.001 \ (0.1\%) \pm 0.013 \ (0.8\%) \pm 0.048 \ (2.8\%)$ | -                                                                   | $1.537 \pm 0.001 \ (0.1\%) \pm 0.010 \ (0.7\%) \pm 0.044 \ (2.8\%)$            |
| Z(13)/Z(7)                 | $1.979 \pm 0.002 \ (0.1\%) \pm 0.014 \ (0.7\%) \pm 0.055 \ (2.8\%)$ | _                                                                   | $1.724 \pm 0.001 \ (0.1\%) \pm 0.009 \ (0.5\%) \pm 0.048 \ (2.8\%)$            |
| Z(8)/Z(7)                  | $1.160 \pm 0.001 \ (0.1\%) \pm 0.007 \ (0.6\%) \pm 0.030 \ (2.6\%)$ | -                                                                   | $1.122 \pm 0.001 \ (0.1\%) \pm 0.007 \ (0.6\%) \pm 0.029 \ (2.6\%)$            |
| $t\bar{t}(13)/t\bar{t}(8)$ | $3.365 \pm 0.039 \ (1.2\%) \pm 0.112 \ (3.3\%) \pm 0.105 \ (3.1\%)$ | -                                                                   | $3.270 \pm 0.038 \ (1.2\%) \pm 0.086 \ (2.6\%) \pm 0.102 \ (3.1\%)$            |
| $t\bar{t}(13)/t\bar{t}(7)$ | $4.470 \pm 0.086 \ (1.9\%) \pm 0.149 \ (3.3\%) \pm 0.136 \ (3.0\%)$ | -                                                                   | $4.322 \pm 0.083 \ (1.9\%) \pm 0.116 \ (2.7\%) \pm 0.131 \ (3.0\%)$            |
| $t\bar{t}(8)/t\bar{t}(7)$  | $1.328 \pm 0.024 \ (1.8\%) \pm 0.015 \ (1.1\%) \pm 0.038 \ (2.9\%)$ | _                                                                   | $1.322 \pm 0.024 \ (1.8\%) \pm 0.015 \ (1.1\%) \pm 0.038 \ (2.9\%)$            |

#### **Double ratios**

|                    | $\left[\sigma^{ m tot}/\sigma^{ m tot} ight]/\left[\sigma^{ m tot}/\sigma^{ m tot} ight]$ | $\left[\sigma^{ m tot}/\sigma^{ m tot} ight]/\left[\sigma^{ m fid}/\sigma^{ m fid} ight]$ | $\left[\sigma^{ m fid}/\sigma^{ m fid} ight]/\left[\sigma^{ m fid}/\sigma^{ m fid} ight]$ |
|--------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                    | Value $\pm$ stat $\pm$ syst $\pm$ lumi                                                    | Value $\pm$ stat $\pm$ syst $\pm$ lumi                                                    | Value $\pm$ stat $\pm$ syst $\pm$ lumi                                                    |
| $t\bar{t}/Z(13/8)$ | $1.975 \pm 0.023 \ (1.2\%) \pm 0.067 \ (3.4\%) \pm 0.006 \ (0.3\%)$                       | $2.193 \pm 0.026 \ (1.2\%) \pm 0.074 \ (3.4\%) \pm 0.008 \ (0.4\%)$                       | $2.131 \pm 0.025 \ (1.2\%) \pm 0.057 \ (2.7\%) \pm 0.006 \ (0.3\%)$                       |
| $t\bar{t}/Z(13/7)$ | $2.260 \pm 0.044 \ (1.9\%) \pm 0.075 \ (3.3\%) \pm 0.007 \ (0.3\%)$                       | $2.594 \pm 0.050 \ (1.9\%) \pm 0.086 \ (3.3\%) \pm 0.008 \ (0.3\%)$                       | $2.508 \pm 0.048 \ (1.9\%) \pm 0.067 \ (2.7\%) \pm 0.008 \ (0.3\%)$                       |
| $t\bar{t}/Z(8/7)$  | $1.145 \pm 0.021 \ (1.8\%) \pm 0.015 \ (1.3\%) \pm 0.003 \ (0.3\%)$                       | $1.184 \pm 0.022 \ (1.8\%) \pm 0.015 \ (1.3\%) \pm 0.003 \ (0.3\%)$                       | $1.178 \pm 0.022 \ (1.8\%) \pm 0.015 \ (1.3\%) \pm 0.003 \ (0.3\%)$                       |