D* meson production in diffractive DIS

Pierre Van Mechelen on behalf of the H1 Collaboration

Low x Workshop, Bari June 2017

D* meson production in diffractive DIS

Diffractive deep-inelastic scattering

- Characterized by large rapidity gap between proton and hadronic system X
- QCD description as exchange of collective colorless partonic states (pomerons) based on
 - collinear factorization
 - proton vertex factorization
- → extraction of diffractive PDFs (DPDFs), with DGLAP evolution equations
- D* mesons are produced via photon-gluon fusion
- → probe gluon content of the pomeron and test factorization ansatz

 $ep \to ep X$

NLO calculation

Adapting HVQDIS for diffraction

- Collinear factorization with H1 2006 DPDF Fit B NLO parton densities
- Massive charm produced via photon-gluon fusion
- Charm quarks fragmented independently in to D* mesons
 - $f(c \rightarrow D^*) = 0.235 \pm 0.007$
 - Kartvelishvili parametrization for reweighting longitudinal part
- Factorization and renormalization scales set to

$$\mu_{
m r}=\mu_{
m f}=\sqrt{Q^2+4m_{
m c}^2}$$

with $m_c = 1.5 \text{ GeV}$

- The following uncertainties are added in quadrature:
 - factorization and renormalisation scale variation with factor 0.5 and 2
 - charm pole mass between 1.3 and 1.7 GeV
 - uncertainties on Kartvelishvili parameters
 - DPDF uncertainties
- Contribution of B hadrons decaying to D* (3% in nondiffractive DIS) is neglected

The H1 detector

D* reconstruction

Full reconstruction of "golden" decay channel

 $D^{*+} o D^0 \pi^+_{
m slow} o (K^- \pi^+) \pi^+_{
m slow} \qquad (+{
m C.\,C.\,})$

- Branching ratio of $2.66 \pm 0.03\%$
- $K^{-}\pi^{+}$ invariant mass within 80 MeV of nominal D⁰ mass
- Simultaneous fit to Δm for right and wrong charge combination to extract signal and background

D* in diffractive DIS

 \rightarrow total number of D* mesons = 1169 +/- 58

Data analysis

H1 Data

IP p-diss

IP exchange

R exchange

60

80

Data collected in 2005-2006 at $\sqrt{s} = 319$ GeV

(* 1 400 2 2

300

200

100

(*Q)₅₀₀

400F

300F

200F

100 F

0

20

40

0.4

0.6

0.8

0.2

- Integrated luminosity = 287 pb^{-1}
- Data corrected for
 - background
 - trigger efficiency
 - acceptance
 - QED radiation
- Systematic uncertainty dominated by p-diss

Detector level comparison of data vs. RAPGAP (reweighted)

Pierre Van Mechelen – Universiteit Antwerpen

Integrated cross section

Result from data

$$\sigma_{
m ep
ightarrow eYX(D^*)} = 314 \pm 23 ~{
m (stat.)} \pm 35 ~{
m (syst.)} ~{
m pb}$$

NLO HVQDIS calculation based on H1 2006 DPDF Fit B

$$\sigma^{
m theory}_{
m ep
ightarrow eYX(D^*)} = 265 ~^{+54}_{-40} ~({
m scale}) ~^{+68}_{-54} ~(m_{
m c}) ~^{+7.0}_{-8.2} ~({
m frag.}) ~^{+31}_{-35} ~({
m DPDF}) ~{
m pb}$$

Differential cross sections

p(*P*)

Differential cross sections

p(*P*)

Pierre Van Mechelen – Universiteit Antwerpen

Differential cross sections

p(*P*)

Diffractive-to-nondiffractive ratio

Result from data

$$R_{
m D} = 6.6 \pm 0.5 \; ({
m stat.} \;) \, {}^{+0.9}_{-0.8} \; ({
m syst.} \,)\%$$

NLO HVQDIS calculation based on H1 2006 DPDF Fit B

$$R_{
m D}^{
m theory} = 6.0 \ ^{+1.0}_{-0.7} \ ({
m scale}) \ ^{+0.5}_{-0.4} \ (m_{
m c}) \ ^{+0.7}_{-0.8} \ ({
m DPDF}) \ ^{+0.02}_{-0.04} \ ({
m frag.})\%$$

Pierre Van Mechelen – Universiteit Antwerpen

Diffractive-to-nondiffractive ratio

Comparison to previous measurements

Diffractive fraction

- Agreement with previous results
- Compatible ratios in DIS and photoproduction

Summary

- New results with 6-fold increase in integrated luminosity
 - Smaller uncertainty, more differential
- Well described by NLO calculations
 - Support for collinear factorization in diffraction
- Diffractive-to-nondiffractive ratios also in agreement with NLO calculations
 - No sign for different rapidity gap probability in DIS and photoproduction