Hadronization of highly virtual parions: perturbative vs nonperturbative seenarios

Berin Kepelienich Valparaises

Bisceglie, June. 16, 2017

Hard parton collision

High-pt parton scattering leads to formation of 4 cones of gluon radiation: (i) the color field of the colliding partons is shaken off in forward-backward directions.

(ii) the scattered partons carry no field up to transverse momenta kt<pt.

The final state partons are regenerating the lost color field by radiating gluons and forming the up-down jets.

The coherence length/time of gluon radiation

$$\mathbf{l_c} = rac{\mathbf{2E}\,\mathbf{x}(\mathbf{1}-\mathbf{x})}{\mathbf{k_T^2}+\mathbf{x^2m_a^2}} pprox rac{\mathbf{2}\,\omega}{\mathbf{k_T^2}}$$

First are radiated gluons with small longitudinal and large transverse momenta.

How much energy is radiated over the path length L? $\Delta E(L) = E \int_{\Lambda^2}^{Q^2} dk^2 \int_{\Omega}^{1} dx \, x \, \frac{dn_g}{dx \, dk^2} \Theta(L - l_c)$ $\frac{dn_g}{dx\,dk^2} = \frac{2\alpha_s(k^2)}{3\pi\,x}\,\frac{k^2[1+(1-x)^2]}{[k^2+x^2m_a^2]^2}$

Dead-cone effect: gluons with $k^2 < x^2 m_q^2$ are suppressed. Heavy quarks radiate less energy than the light ones.

Another dead cone: soft gluons cannot be radiated at short path length

$$\mathbf{k^2} > \frac{\mathbf{2Ex}(\mathbf{1} - \mathbf{x})}{\mathbf{L}} - \mathbf{x^2m_q^2}$$

This is why heavy and light quarks radiate with similar rates at short time scales $\ \mathbf{L} \lesssim \frac{\mathbf{E}\mathbf{x}(\mathbf{1}-\mathbf{x})}{\mathbf{x}^2m^2}$

B.K., I.Potashnikova, I.Schmidt, PRC 82(2010)037901

L (fm)

10

How fast is energy dissipation?

A light quark loses 40% of the total radiated energy during the first 1fm.

Energy conservation imposes severe restrictions on the production length l_p for hadrons with large fractional momentum z_h .

Gluons with $\mathbf{x} > \mathbf{1} - \mathbf{z}_h$ are forbidden, This leads to Sudakov suppression

The hadron cannot be produced after the parton momentum falls below $p_{\rm T}$, i.e. $\Delta E/E>1-z_h$

Hadronízatíon ín vacuum

The mean value $\langle z_h \rangle$

Production of heavy flavored mesons occur with larger z_h $\langle \mathbf{z_D} \rangle = \mathbf{0.76}$ $\langle \mathbf{z_B}
angle = 0.89$

 $(\sqrt{\mathbf{s}} = 7 \, \mathbf{TeV})$

Perturbative hadronization at large z

E. Berger, PLB 89(1980)241

B.K., H.J.Pirner, I.Schmidt, A.Tarasov PRD 77(2008)054004

B.K., H.J.Pirner, I.Potashnikova, I.Schmidt, PLB 662(2008)117

Test vs KKP and BKK:

t_p -dependent fragmentation function $\partial \mathbf{D}_{\pi/\mathbf{q}}(\mathbf{z_h}, \mathbf{E})$ $\partial \mathbf{t_p}$

 $\langle t_{\mathbf{p}}(\mathbf{z_h}, \mathbf{E}) \rangle = \frac{1}{D_{\pi/\mathbf{q}}} \int dt_{\mathbf{p}} t_{\mathbf{p}} \frac{\partial D_{\pi/\mathbf{q}}(\mathbf{z_h}, \mathbf{E^2})}{\partial t_{\mathbf{p}}}$

Production time/length

Why the Lorentz factor does not make l_p longer at large p_T ?

Jet features depend on two parameters, the hard scale Q^2 and jet energy E.

Energy and scale dependences of $l_{\rm D}$ in SIDIS:

(i) Energy dependence at fixed Q^2 $\langle dE/dl\rangle$ is fixed, so $~l_{\rm p}\propto E$

(ii) Scale dependence at fixed energy $\langle dE/dl\rangle$ rises with $Q^2_{\textrm{,}}$ so $l_p(Q^2)$ is falling

Specifics of high-pT jets: $\mathbf{E} = \mathbf{p_T}$; $\mathbf{Q^2} = \mathbf{p_T^2}$

- For the leading hadron energy conservation constraint: $l_p \lesssim rac{E}{dE/dl}(1-z_h)$

Charmoníum with high p

Color singlet mechanism

direct J/Ψ

from χ

E.Berger & D.Jones PRD 23(1981)1521 R.Baier & R.Ruckl PLB102(1981)364 collinear factorization

Ph.Hagler, R.Kirschner, A.Schaefer, L.Szymanowski, O.Teryaev PRD63(2001)077501

k_factorization should not be applied at $~k_{\rm T} \sim p_{\rm T}$

F. Abe et al., PRL 79(1997)572

Charmonium with high p

Color-singlet model fails, because the strong kick from the target breaks-up the c-cbar pair.

Color-octet model: the projectile gluon can easily accept a strong kick, and then fragment to J/ψ via production of a color-octet c-cbar. Fragmentation is assumed to happen on a long time scale, by a soft mechanism, which cannot be calculated, but fitted.

However, we demonstrated that energy conservation resticts the time of color neutralization and the colorless c-cbar dipole is produced promptly, in the perturbative regime. Therefore this contribution can be evaluated.

Gluon fragmentation

Perturbative fragmentation $\,{f g} ightarrow{f J}/\psi+2g$

S. Baranov & B.K. 2017

 $|\mathbf{g}||^2 dm_{\mathbf{g}}^2 d\Omega_{\psi} d\phi ds_2 ds_3$

 $\mathrm{d}\Omega_{\psi}\,\mathrm{d}\phi\,\mathrm{ds_2}\,\mathrm{ds_3}.$

Quark fragmentation

Even if a strong kick breaks-up the c-cbar pair, a single high-pT c-quark can fragment into J/ψ similar to $q - > \pi q$ transition

S. Baranov & B.K. 2017

entation ar pair, to J/y

Gluon vs quark fragmentations

Reserves:

kt-factorization pulls the result up by about factor three J/ψ 's from X should be excluded from data, pulling it down by about 30% No severe disagreement remains

A high-p jet with virtuality equal to its energy dissipates energy so intensively, that has to produce a leading hadron (colorless dipole) with large z promptly, on a very short time scale, which does not rise with p_.

Production of a dipole on a short time scale can be treated perturbatively.

A high-p J/ ψ appears to result from perturbative fragmentation of either a gluon, or a quark

Reasonable agreement with data at high p_T is achieved.

Quenching of high-p_hadrons

Exact solution: path integrals

BK, B.Zakharov, Phys.Rev. D44(1991)3466

One has to sum up all quark trajectories.

$$\left[i \frac{d}{dl_2} - \frac{m_q^2 - \Delta_{r_2}}{p_T/2} - V_{\bar{q}q}(l_2, r_2) \right] G_{\bar{q}q}(l_1, r_1; l_2, r_2) = 0$$

$$\mathrm{Im} \mathbf{V}_{\mathbf{ar{q}q}}(\mathbf{l},\mathbf{r}) = -rac{1}{4}\,\mathbf{\hat{q}}(\mathbf{l})\,\mathbf{r^2}$$

 $\mathbf{R}_{\mathbf{A}\mathbf{A}}$ rises with $\mathbf{P}_{\mathbf{T}}$ due to color transparency

The model for time and position dependent $\hat{\mathbf{q}}$ $\hat{q}(l, \vec{b}, \vec{\tau}) = \frac{\hat{q}_0 \, l_0}{l} \, \frac{n_{part}(\vec{b}, \vec{\tau})}{n_{part}(0, 0)}$

BACKUPS

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Quenching of high-p_hadrons

BACKUPS

Azímuthal asymmetry

