Yury Senichev

Frozen and Quasi-frozen spin lattices

on behalf of Collaboration " ülich lectric ipole moment nvestigation"
10. März 2017

The EDM experiment problems

1. Beam optics (betatron tunes, sextupoles, DA, RF, straignt sections and so on)
2. Spin coherence time maximizing up to $t_{\text {coh }}>1000 \mathrm{sec}$ to provide the possible EDM signal observation
3. Systematic errors investigation to exclude "fake EDM signal"
4. Maximum beam polarization $\mathrm{P} \sim 80 \%$
5. Beam intensity $\sim 10^{10} \div 10^{11}$ particle per fill
6. Maximum analyzing power of polarimeter $\mathrm{A} \sim 0.6$
7. Maximum efficiency of polarimeter $f>10^{-3}$
8. Total running time of accelerator $\sim 5 \div 7$ thousand hours
9. Minimum radius of machine with $\mathrm{E} \sim 10 \div \mathbf{1 2} \mathbf{~ M V} / \mathrm{m}$

Most important problems in the ring for EDM search:

1. Frozen (or quasi-frozen) spin lattice
2. Spin decoherence
3. Systematic errors

Two concepts of lattices for deuteron EDM search have been investigated:

1. Frozen Spin (FS) method
2. Quasi-frozen spin (QFS) method

T-BMT and the basic measurement principle

$\frac{d \vec{S}}{d t}=\vec{S} \times \vec{\Omega}_{M D M}+\vec{S} \times \vec{\Omega}_{E D M}$
$\vec{\Omega}_{M D M}=\frac{e}{m}\left[G \vec{B}-\left(G-\frac{1}{\gamma^{2}-1}\right) \frac{\vec{E} \times \vec{\beta}}{c}\right]$
$\vec{\Omega}_{E D M}=\frac{e}{m} \frac{\eta}{2}\left[\frac{\vec{E}}{c}+\vec{\beta} \times \vec{B}\right]$
Frozen s
$\vec{\Omega}_{M D M}=0$
The spin stays parallel to the momentum

Quasi-frozen spin condition: $\gamma G \Phi_{B}=\left[\frac{1}{\gamma}(1-G)+\gamma G\right] \Phi_{E}$ Φ_{E} and Φ_{B} - the angles of the momentum rotation in the electric and the magnetic parts of the ring

$$
\left\langle\vec{\Omega}_{M D M}\right\rangle=0
$$

Frozen spin method

$\left(\frac{1}{\gamma^{2}-1}-G\right)\left(\frac{\vec{\beta} \times \vec{E}}{c}\right)+G \vec{B}=0$

- Combined E+B elements: radial E field and vertical B field
- The ring radius depends on deuteron G factor and energy
- For 270 MeV deuterons the ring radius and length are:
$R=\frac{|G|}{(|G|-1)} \cdot\left[\frac{m c^{2}}{e E}\right] \gamma^{3} \beta^{2} \approx 9.2 \mathrm{~m}$
Length $=145 \mathrm{~m}$

Quasi-frozen spin method

$\gamma G \Phi_{B}=\left[\frac{1}{\gamma}(1-G)+\gamma G\right] \Phi_{E}$
Φ_{E} and Φ_{B} - the angles of the momentum rotation in the electric and the magnetic parts of the ring

- Electric arcs with negative curvature and magnetic arcs
- The radii should fulfil the condition that keeps the spin vector parallel to the momentum after one revolution

$$
\begin{aligned}
& \mathrm{R}_{\text {magnetic }} \approx 2.3 \mathrm{~m} \\
& \mathrm{R}_{\text {electric }} \approx 42.1 \mathrm{~m}
\end{aligned}
$$

Length $=166 \mathrm{~m}$

d-EDM ring for different energies

29.6 m x 55.7 m

COSY

34 m x 71 m

Parameters of rings

Energy	75 MeV	200 MeV	270 MeV
Number FODO cells	18 cells	20 cells	20 cells
Number of quadrupole magnets, effective length, gradient (T/m)	36; $0.2 \mathrm{~m} ; 6 \div 1.0 \mathrm{~T} / \mathrm{m}$	40; $0.2 \mathrm{~m} ; 6 \div 4 \mathrm{~T} / \mathrm{m}$	$\begin{aligned} & 40 ; 0.2 \mathrm{~m} ; 4.5 \div 4 \\ & \mathrm{~T} / \mathrm{m} \end{aligned}$
Number of bend magnets, field (T), length (m), radius of curvature	8; 1.2 T; 1.4 m; 1.5 m	8; 1.5 T; $1.9 \mathrm{~m} ; 2 \mathrm{~m}$	$\begin{aligned} & 8 ; 1.5 \mathrm{~T} ; 2.2 \mathrm{~m} ; 2.3 \\ & \mathrm{~m} \end{aligned}$
Number of electrostatic deflectors, field, length, radius of curvature	$\begin{aligned} & 8 ; 120 \mathrm{kV} / \mathrm{cm} ; 1.74 \mathrm{~m} ; \\ & 12.3 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 16 ; 120 \mathrm{kV} / \mathrm{cm} ; 2.54 \mathrm{~m} ; \\ & 31.7 \mathrm{~m} \end{aligned}$	16; $120 \mathrm{kV} / \mathrm{cm}$; 3.6m; 42.6 m
Circumference, m	93 m	151 m	171 m
Momentum compaction factor	0.12	0.09	0.096
Maximum dispersion, m	2.5 m	7 m	9 m
Straight sections number with $\mathrm{D} \neq 0$ and $\mathrm{D}=0$, length	$\begin{aligned} & 2 \times 5.0 \mathrm{~m} ;(\mathrm{D} \neq 0) \\ & 2 \times 20.4 \mathrm{~m} ;(\mathrm{D}=0) \end{aligned}$	$\begin{aligned} & 2 \times 7.5 \mathrm{~m} ;(\mathrm{D} \neq 0) \\ & 2 \times 22.8 \mathrm{~m} ;(\mathrm{D}=0) \end{aligned}$	$\begin{aligned} & 2 \times 7.5 \mathrm{~m} ;(\mathrm{D} \neq 0) \\ & 2 \times 23.2 \mathrm{~m} ;(\mathrm{D}=0) \end{aligned}$
Maximum beta-function X and Y planes	$B_{x} 10 \mathrm{~m}$; B_{y} changes in range $10 \div 500 \mathrm{~m}$	$B_{x} 14 \mathrm{~m}$; B_{y} changes in range $14 \div 500 \mathrm{~m}$	$B_{x} 20 \mathrm{~m} ; B_{y}$ changes in range $20 \div 500 \mathrm{~m}$
Tune, X and Y	$v_{\mathrm{x}}=6.4 ; \mathrm{v}_{\mathrm{y}}=5.4 \div 0.4$	$\mathrm{v}_{\mathrm{x}}=4.8 ; \mathrm{v}_{\mathrm{y}}=4.3 \div 0.2$	$v_{x}=4.6 ; v_{y}=3.3 \div 0.1$
Number of sextupoles, effective length, gradient	$\begin{aligned} & 20 ; 0.15 \mathrm{~m} ; \mathrm{S}_{\mathrm{x}}=24 \\ & \mathrm{~T} / \mathrm{m}^{2} ; \mathrm{S}_{\mathrm{y}}=43 \mathrm{~T} / \mathrm{m}^{2} \end{aligned}$	$\begin{aligned} & 28 ; 0.15 \mathrm{~m} ; \mathrm{S}_{\mathrm{x}}=24 \\ & \mathrm{~T} / \mathrm{m}^{2} ; \mathrm{S}_{\mathrm{y}}=28 \mathrm{~T} / \mathrm{m}^{2} \end{aligned}$	$\begin{aligned} & 28 ; 0.15 \mathrm{~m} ; \mathrm{S}_{\mathrm{x}}=15 \\ & \mathrm{~T} / \mathrm{m}^{2} ; \mathrm{S}_{\mathrm{y}}=17 \mathrm{~T} / \mathrm{m}^{2} \end{aligned}$

dر лйисн

An analogue of QFS option

Jülich

QFS lattice

ARC with straight section

$$
r^{\prime \prime}-\frac{1}{r}+\frac{1}{R_{e q}^{2}} r=0
$$

Cooler Synchrotron COSY in QFS mode $\boldsymbol{\rho}$ J Ј ІІсн

- The proposed method of searching for EDM is based on measuring the sum and difference frequency of spin precession in the vertical plane due to EDM and MDM, respectively, for the CW and CCW cases.
- In order to exclude the influence of spin precession frequencies in other planes on the spin precession frequency in the vertical plane, certain relations are fulfilled between them, having the character of an approximate value.
- For the transition from CW to CCW, it is suggested to use the calibration of the equilibrium Lorentz factor in terms of the precession of the spin in the horizontal plane, which is then used for EDM search in the vertical plane.

Systematic errors:

In fact, for the EDM measurement at $10^{-29} \mathrm{e} \mathrm{cm}$ we have two possibilities: either we should strive to reduce the misalignments to the values for today unrealistic $\sim 10^{-11} \mathrm{~m}$, or to develop a procedure for EDM measurement in the presence of the actual error values.
And we have gone on the second way!!!

COSY Infinity and MODE codes

Spin-orbit dynamics of polarized beam investigated using:

- the code COSY Infinity
(M. Berz,Michigan State University, USA)
- the code MODE
(S. Andrianov and A. Ivanov St.Petersburg University).

The algorithms of COSY Infinity and MODE are different and it gives the possibility to check the results of calculation.

Conclusion

- We have formulated the basic requirements for the accelerator, in which it is possible measuring EDM at $10^{-29} \mathrm{e} \cdot \mathrm{cm}$
- We have developed and tested experimentally the method of how to achieve a long spin coherence time using sextupoles
- We learned how to measure the spin frequency with absolute accuracy $10^{-6} \mathrm{rad} / \mathrm{sec}$ in one fill
- We have developed the concept of quasi-frozen spin lattice and learned how to adapt the concept of QFS to COSY ring
- We have developed the methodology how to take into account the systematic errors

Spare slides in case of questions

Spin Coherence and Depolarisation

One of the main challenges is to have spin coherence time (SCT) of ~ 1000 seconds What is SCT?

Spin vectors aligned T_{0}

Spin vectors are out of phase in the horizontal plane

T

Loss of longitudinal polarisation causes loss of EDM effect

$$
\begin{aligned}
& \vec{\Omega}_{M D M}=\frac{e}{m}\left[G \vec{B}-\left(G-\frac{1}{\gamma^{2}-1}\right) \frac{\vec{E} \times \vec{\beta}}{c}\right] \\
& \Delta{\overleftarrow{\delta_{\text {equil }}}=\frac{\gamma_{s}^{2}}{\gamma_{s}^{2} \alpha_{0}-1}\left[\frac{\delta_{m}^{2}}{2}\left(\alpha_{1}-\frac{\alpha_{0}}{\gamma_{s}^{2}}+\frac{1}{\gamma_{s}^{4}}\right)+\left(\frac{\Delta L}{L}\right)_{\beta}\right]}_{\begin{array}{l}
\text { The averaged Lorentz factor over all particles } \\
\text { will be called the generalized Lorentz factor }
\end{array}}^{\left(\frac{\Delta L}{L}\right)_{\beta}=\frac{\pi}{2 L}\left[\epsilon_{x} v_{x}+\epsilon_{y} v_{y}\right]} \begin{array}{ll}
\Delta \delta_{\text {equil }}=\Delta\left(\frac{\Delta p}{p}\right)_{\text {equil }} & v_{x}, v_{y} \text { are horizontal and vertical betatron tunes }
\end{array}
\end{aligned}
$$

- Different orbit lengths for different particles in the beam
- X and Y emittance sizes play the main role
- $\Delta P / P$ effects

Solutions:

- X and Y correction with sextupoles and beam cooling

- $\Delta \mathrm{P} / \mathrm{P}$ correction with RF

General relation between EDM and fake MDM signals

In vertical plane:
In horizontal plane:
In longitudinal direction:

The total spin signal for case $\Omega_{B z}=0$ and $\Omega_{\mathrm{B}_{\mathrm{x}}} \neq 0$

$$
S_{y}(t)=\frac{\left(\Omega_{E D M}+\Omega_{B x}\right) \cdot \sin \left(\sqrt{\left(\Omega_{E D M}+\Omega_{B x}\right)^{2}+\delta \Omega_{\text {decoh }}^{2}} \cdot t\right)}{\sqrt{\left(\Omega_{E D M}+\Omega_{B x}\right)^{2}+\delta \Omega_{\text {decoh }}^{2}}}
$$

Contribution of vertical oscillation into the horizontal plane should be negligibly small in comparison with EDM signal which we expect in vertical plane:

$$
\delta \Omega_{\text {decoh }}{ }^{2}<2 \Omega_{E D M} \Omega_{B_{x}}
$$

Similarly for longitudinal plane its contribution into the horizontal plane should be negligibly small in comparison with EDM signal:

$$
\Omega_{B_{z}}{ }^{2}<2 \Omega_{E D M} \Omega_{B_{x}}
$$

1. FS concept with no misalignments and no MDM decoherence

In the coordinate system with momentum

$$
\begin{aligned}
& \frac{d \vec{S}}{d t}=\vec{S} \times \frac{e}{r m}[\underbrace{G \gamma \vec{B}_{\perp}+\left(\frac{\gamma}{\gamma^{2}-1}-\gamma G\right) \frac{\overrightarrow{E_{\perp}} \times \vec{\beta}}{c}}_{\vec{\Omega}_{M D M}}+\underbrace{\frac{\eta}{2}\left(\vec{\beta} \times \vec{B}_{\perp}+\frac{\overrightarrow{E_{\perp}}}{c}\right)}_{\vec{\Omega}_{E D M}}] \text { or } \frac{d \vec{S}}{d t}=\vec{S} \times\left[\vec{\Omega}_{M D M}+\vec{\Omega}_{E D M}\right] \\
& \text { FS condition: } \Omega_{M D M}=0 \text {, that is } \begin{array}{l}
\Omega_{x}=\Omega_{E D M} \\
\Omega_{y}=0
\end{array} \\
& \frac{d S_{y}}{d t}=-\Omega_{E D M} S_{z} \\
& \frac{d S_{z}}{d t}=\Omega_{E D M} S_{y} \\
& \text { At } S_{x}=S_{y}=0, S_{z}=1 \\
& \text { EDM signal } \sim S_{y}(t)=\sin \left(\Omega_{E D M} t\right)
\end{aligned}
$$

At presumable value of EDM ~10-29 e.cm after 10^{9} turns ($\sim 1000 \mathrm{sec}$) S_{y} grows up 10^{-6} rad

2. FS concept with no misalignments and with MDM decoherence

$$
\begin{gathered}
\frac{d \vec{S}}{d t}=\vec{S} \times\left[\vec{\Omega}_{M D M}+\vec{\Omega}_{E D M}\right] \text { and } \begin{array}{l}
\Omega_{x}=\Omega_{E D M} \\
\Omega_{y}=0+\delta \Omega_{\text {decoh }}
\end{array} \\
S_{x}(t)=\frac{\Omega_{\text {decoh }} \cdot \sin \left(\sqrt{\left.\Omega_{E D M}^{2}+\Omega_{\text {decoh }}^{2} \cdot t\right)}\right.}{\sqrt{\Omega_{E D M}^{2}+\Omega_{\text {decoh }}^{2}} ;} \\
S_{y}(t)=-\frac{\Omega_{E D M} \cdot \sin \left(\sqrt{\left.\Omega_{E D M}^{2}+\Omega_{\text {decoh }}^{2} \cdot t\right)}\right.}{\sqrt{\Omega_{E D M}^{2}+\Omega_{\text {decoh }}^{2}}} ;
\end{gathered}
$$

$$
S_{x}(t) \approx \sin \Omega_{\text {decoh }} t \text { and EDM signal } \sim \sum_{\mathrm{i}} S_{y}^{i}(t)=\Omega_{E D M} t \cdot \sum_{i} \frac{\sin \Omega_{\text {decoh }}{ }^{i}}{\Omega_{\text {deco } h}^{i}}
$$

$$
\begin{aligned}
& \underbrace{\Omega_{\text {decoh }} \sim 10^{-3} \mathrm{rad} / \mathrm{sec}}_{\text {in horizontapplane }} \text { and } \\
& \underbrace{\Omega_{\text {EDM }} \sim 10^{-9} \mathrm{rad} / \mathrm{sec}}_{\text {in vertical plane }}
\end{aligned}
$$

$$
\max \left\{\Omega_{\text {decon }} t_{\text {onefill }}\right\}<\pi \text { or }\left\langle\Omega_{\text {decoh }}\right\rangle \cdot t_{\text {onefill }}<1
$$

in case of it

Methodology of EDM search

The proposed method of searching for EDM is based on:

- measuring the sum and difference frequency of spin precession in the vertical plane due to EDM and MDM, correspondingly, for the CW and CCW cases with absolute accuracy 10^{-7} rad per second in one fill;
- independence of the absolute error in determining the spin precession frequency from the frequency itself;
- Unchangeable position of the accelerator elements and as a consequence the constant ratio of the leading field By to the component of the field that determine the fake signal Bx ;
- the non-influence of spin precession frequencies in other planes on the spin precession frequency in the vertical plane. Certain relations are fulfilled between them, having the character of an approximate value.
- For the transition from CW to CCW it is suggested to use the calibration of the equilibrium Lorentz factor in terms of the precession of the spin in the horizontal plane, which is then used in the vertical plane.

3. FS concept with misalignments $B_{x} \neq 0$ and MDM decoherence

$$
\frac{d \vec{S}}{d t}=\vec{S} \times\left[\vec{\Omega}_{M D M}+\vec{\Omega}_{E D M}\right] \text { and } \begin{aligned}
& \Omega_{x}=\Omega_{E D M}+\Omega_{B x} \\
& \Omega_{y}=0+\delta \Omega_{\text {decoh }}
\end{aligned}
$$

$$
\text { At } S_{x}=S_{y}=0, S_{z}=1
$$

$$
\begin{aligned}
& S_{x}(t)=\frac{\delta \Omega_{\text {decoh }} \cdot \sin \left(\sqrt{\left(\Omega_{E D M}+\Omega_{B x}\right)^{2}+\delta \Omega_{\text {decoh }}^{2} \cdot t}\right)}{\sqrt{\left(\Omega_{E D M}+\Omega_{B x}\right)^{2}+\delta \Omega_{\text {decoh }}^{2}}} ; \\
& S_{y}(t)=\frac{\left(\Omega_{E D M}+\Omega_{B x}\right) \cdot \sin \left(\sqrt{\left(\Omega_{E D M}+\Omega_{B x}\right)^{2}+\delta \Omega_{\text {decoh }}^{2}} \cdot t\right)}{\sqrt{\left(\Omega_{E D M}+\Omega_{B x}\right)^{2}+\delta \Omega_{\text {decoh }}^{2}}}
\end{aligned}
$$

Misalignment, $\mathrm{Bx} \neq 0$:
Due to magnet rotation relative to the longitudinal axis the horizontal component of the magnetic field arises and causes the spin rotation $\Omega_{x}=\Omega_{B x}$. In COSY simulation we took the magnets misalignment $10 \mu \mathrm{~m}$, which corresponds to the rotation angle of magnet around the axis about $\alpha_{\max }= \pm 10^{-5} \mathrm{rad}$ and causes MDM spin rotation $\Omega_{B x}=3 \mathrm{rad} / \mathrm{sec}$ in vertical plane
and taking into account
$\Omega_{E D M}=10^{-9} \mathrm{rad} / \mathrm{sec}$,
$\delta \Omega_{\text {decoh }}=10^{-3} \mathrm{rad} / \mathrm{sec}$
$\Omega_{B x}=3 \mathrm{rad} / \mathrm{sec}$

$$
\Omega_{B x}=\frac{e}{m \gamma} \cdot \gamma G B_{x} \gg \Omega_{\text {decoh }}
$$

$$
\begin{aligned}
& <S_{x}(t)>=\frac{\left\langle\delta \Omega_{\text {decoh }}\right\rangle}{\Omega_{B x}} \cdot \sin \Omega_{B x} \cdot t \\
& S_{y}(t) \approx-\sin \left(\Omega_{B x}+\Omega_{E D M}\right) \cdot t
\end{aligned}
$$

\square

Due to rapid rotation in vertical plane and the preservation of growth direction of decoherence the growth of decoherence is restricted by one revolution in the Bx field

Compared with the previous case the EDM can be determined through measurement of frequency $\Omega_{\mathrm{BX}}+\Omega_{\mathrm{EDM}}$ only

3a. FS concept: Conversion of decoherence from horizontal plane into vertical plane

Due to oscillation in Bx field $\left\langle S_{x}(t)\right\rangle=\frac{\left\langle\delta \Omega_{\text {decoh }}\right\rangle}{\Omega_{p}} \cdot \sin \Omega_{B x} \cdot t \quad$ the decoherence in horizontal plane remaines to be on the ${ }^{\Omega_{\text {fevel }}}\left\langle S_{x}(t)>=\frac{\left\langle\delta 2_{\text {decon }}\right\rangle}{\Omega_{B x}} \sim 0.0001\right.$

Due to misalignments spin oscillates in a vertical plane with frequency Ω_{x} (in our case 3 $\mathrm{rad} / \mathrm{sec}$) and restricts the decoherence in the horizontal plane at the level of ~ 0.01 degrees. Simultaneously due to dependence $\Omega_{x}=\frac{e}{\gamma m}(1+G \gamma) \vec{B}_{x}$ on γ we have the spin decoherence already in vertical plane.

4. QFS concept: Effect of Coherent component of spin precession

$$
\frac{d \vec{S}}{d t}=\vec{S} \times\left[\vec{\Omega}_{M D M}+\vec{\Omega}_{E D M}\right] \text { and } \begin{aligned}
& \Omega_{x}=\Omega_{E D M}+\Omega_{B x} \\
& \Omega_{y}=0+\delta \Omega_{\text {decoh }}+\frac{\gamma G}{4} \cdot 2 \pi \cdot \ldots-\ldots-\quad \text { Bipolar Heaviside step function }
\end{aligned}
$$

$$
\Omega_{E \leftrightarrow B} \gg \Omega_{B_{x}}
$$

During one revolution in the field Bx the spin jumps from position S_{E} to position S_{B} and back one million times. Averaging over time we now have to work with the averaged vector in a middle position.

$$
\begin{aligned}
& S_{x}(t)=\frac{\delta \Omega_{\text {decoh }}}{\Omega_{B x}} \cdot \sin \Omega_{B x} \cdot t \\
& S_{y}(t) \approx-\sin \left(\Omega_{B x}+\Omega_{E D M}\right) \cdot t
\end{aligned}
$$

So passing to the measurement of EDM in the vertical plane, we almost lose the distinction between FS and QFS method

『) ЈüLich

COSY Inf+MODE simulation of systematic errors due to magnet rotation around the longitudinal axis

Coherent component

Main steps of EDM search using CW+CCW procedure

To split out the EDM signal from the sum signal we use CW+CCW procedure:

1. Calibration of Bx through By
2. Measurement of the total spin frequency in the experiment with a counter clock-wise (CW) direction of the beam $\Omega_{C W}=\Omega_{B x}^{C W}+\Omega_{E D M}$
3. Calibration of $\mathbf{B x}$ through $\mathbf{B y}$ and installation of B field after the polarity change
4. Measurement of the total spin frequency in the experiment with a counter clock-wise (CCW) direction of the beam $\Omega_{C C W}=-\Omega_{B x}^{C C W}+\Omega_{E D M}$
5. Compare CCW with clock-wise (CW) measurements

$$
\Omega_{E D M}=\left(\Omega_{C W}+\Omega_{C C W}\right) / 2+\left(\Omega_{B x}^{C C W}-\Omega_{B x}^{C W}\right) / 2
$$

6. The difference $\Delta \Omega_{B x}=\Omega_{B x}^{C C W}-\Omega_{B x}^{C W}$ determines the accuracy of the EDM measurement. Calibrating Bx we can minimize $\Delta \Omega_{B x}$ up to value of calibration accuracy.

Bx and By calibration procedure

First, we suggest calibrating the field of the magnets using the relation between the beam gamma and the spin precession frequency in the horizontal plane, that is, determined by the vertical component By. Since the magnet orientation remains unchanged, and the magnets are fed from one power supply, the calibration of By will restore the component Bx with the same relative accuracy $10^{\wedge}(-9)$, that is the difference $\Omega_{B x}^{C C W}-\Omega_{B x}^{C W \text { as well. Such procedure does not }}$
involve EDM signal. involve EDM signal.

> If we assume that we can measure the spin frequencies $\Omega_{C W}, \Omega_{C C W}$ with an accuracy of $10^{\wedge}(-9)$ and reach the calibration accuracy of $\mathbf{B x}$ up to $10^{\wedge}(-9)$ we will be able to determine the EDM frequency up to $10^{\wedge}(-9)$ rad $/ \mathrm{sec}$, which corresponds to the EDM measurement on the level of $10^{\wedge}(-28) \div 10^{\wedge}(-29)$ e-cm

> the results of a numerical simulation of the EDM measurement procedure, we took the EDM $10^{\wedge}(-21)$, that is $\Omega_{E D M}=0.1 \mathrm{rad} / \mathrm{sec}$

Bx coil

Nevertheless, an additional question of how to calibrate the field By using the spin tune measurement in a horizontal plane, if due to misalignments the spin rotates in the vertical plane with relatively high frequency $\sim 3 \mathrm{rad} / \mathrm{sec}$, remains. To solve this problem, we plan for the calibration time only to introduce the inhibitory vertical field, for example by means of a horizontal coil. Having inhibited rotation in the vertical plane to the reasonable value of $\sim 0.1 \mathrm{rad} / \mathrm{sec}$ and calibrated, then we turn off the coil. In this case we do not need to know the value of the field in the coil

Nevertheless introducing the coil we can modify the integral value of the guiding magnetic field By. Let us estimate this value. We know that due to misalignment of magnets with an accuracy of 10 micrometer, we have in $\mathrm{Bx} / \mathrm{By}=10^{\wedge}(-) 6$. Obviously the coil can be installed with the same accuracy and By (coil)/Bx(coil) $=10^{\wedge}(-6)$. Thus, the coil introduces in By of ring 10^(-12)

Sensitivity of EDM experiment

$3 \hbar$

$\sigma_{d p} \approx \frac{P A E_{R} \sqrt{N_{\text {Beam }} f T_{T o t} \tau_{S p i n}}}{}$

$$
\begin{aligned}
& P=0.8 \\
& A=0.6 \\
& E_{R}=12 \mathrm{MV} / \mathrm{m} \\
& N_{\text {Beam }}=2 \cdot 10^{10} \mathrm{p} / \text { fill } \\
& f=0.55 \% \\
& T_{\text {Tot }}=10^{7} \mathrm{~s} \\
& \tau_{\text {Spin }}=10^{3} \mathrm{~s}
\end{aligned}
$$

Beam polarization
Analyzing power of polarimeter
Radial electric field strength
Total number of stored particles per fill
Useful event rate fraction (polarimeter efficiency)
Total running time per year
Polarization lifetime (Spin Coherence Time)
$\sigma_{d p} \approx 3 \cdot 10^{-29} \mathrm{e} \cdot \mathrm{cm}$ for one year measurement

