Precursor Experiment at COSY

Frank Rathmann

Forschungszentrum Jülich

f.rathmann@fz-juelich.de

13.03.2017

Contents

Proof of principle EDM experiment using COSY

Sensitivity to EDMs using an RF Wien filter

2 Waveguide RF Wien filter

- Features
- Internal structure
- Electromagnetic field simulations
 - Required frequencies of RF Wien filter
 - Lorentz force compensation
- Assembly and precision alignment
- Driving circuit

Summary

Toolbox elements for precursor experiment

Proof of principle experiment using COSY ("Precursor experiment")

Highest sensitivity will be achieved with a new type of machine:

- An electrostatic circular storage ring, where
 - centripetal force produced primarily by electric fields.
 - *E* field couples to EDM and provides required sensitivity ($< 10^{-28} \text{ e cm}$).
 - In this environment, magnetic fields mean evil (since μ is large).

Proof of principle experiment using COSY ("Precursor experiment")

Highest sensitivity will be achieved with a new type of machine:

- An electrostatic circular storage ring, where
 - centripetal force produced primarily by electric fields.
 - *E* field couples to EDM and provides required sensitivity ($< 10^{-28} \text{ e cm}$).
 - In this environment, magnetic fields mean evil (since μ is large).

Idea for proof-of-principle experiment with novel RF Wien filter ($\vec{E} \times \vec{B}$):

- In magnetic machine, particle spins (deuterons, protons) precess about stable spin axis (\simeq direction of magnetic fields in dipole magnets).
- Use RF device operating on some harmonic of the spin-precession frequency:
 - \Rightarrow *Phase lock* between spin precession and device RF.
 - \Rightarrow Allows one to accumulate EDM effect as function of time in cycle ($\sim 1000 \, s$).

Proof of principle experiment using COSY ("Precursor experiment")

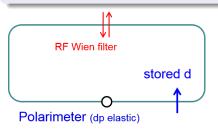
Highest sensitivity will be achieved with a new type of machine:

- An electrostatic circular storage ring, where
 - centripetal force produced primarily by electric fields.
 - *E* field couples to EDM and provides required sensitivity ($< 10^{-28} \text{ e cm}$).
 - In this environment, magnetic fields mean evil (since μ is large).

Idea for proof-of-principle experiment with novel RF Wien filter ($\vec{E} \times \vec{B}$):

- In magnetic machine, particle spins (deuterons, protons) precess about stable spin axis (\simeq direction of magnetic fields in dipole magnets).
- Use RF device operating on some harmonic of the spin-precession frequency:
 - \Rightarrow *Phase lock* between spin precession and device RF.
 - \Rightarrow Allows one to accumulate EDM effect as function of time in cycle ($\sim 1000 \, s$).

Goal of proof-of-principle experiment:

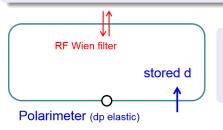

Show that storage ring (COSY) can be used for a first direct EDM measurement.

RF Wien filter

A couple more aspects about the technique:

• RF Wien filter $(\vec{E} \times \vec{B})$ avoids coherent betatron oscillations in the beam:

- Lorentz force $ec{F_L} = q(ec{E} + ec{v} imes ec{B}) \simeq 0.$
- EDM measurement mode: $\vec{B} = (0, B_y, 0)$ and $\vec{E} = (E_x, 0, 0)$.

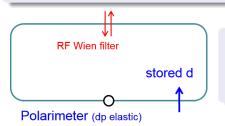


RF Wien filter

A couple more aspects about the technique:

• RF Wien filter $(\vec{E} \times \vec{B})$ avoids coherent betatron oscillations in the beam:

- Lorentz force $ec{F}_L = q(ec{E} + ec{v} imes ec{B}) \simeq 0.$
- EDM measurement mode: $\vec{B} = (0, B_y, 0)$ and $\vec{E} = (E_x, 0, 0)$.


- Deuteron spins lie in machine plane.
- If $d \neq 0 \Rightarrow$ accumulation of vertical polarization P_y , during spin coherence time $\tau_{\text{SCT}} \sim 1000 \text{ s.}$

RF Wien filter

A couple more aspects about the technique:

• RF Wien filter $(\vec{E} \times \vec{B})$ avoids coherent betatron oscillations in the beam:

- Lorentz force $ec{F}_L = q(ec{E} + ec{v} imes ec{B}) \simeq 0.$
- EDM measurement mode: $\vec{B} = (0, B_y, 0)$ and $\vec{E} = (E_x, 0, 0)$.

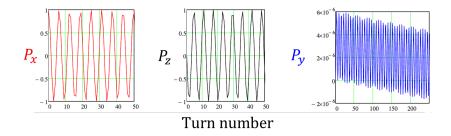
• Deuteron spins lie in machine plane.

• If $d \neq 0 \Rightarrow$ accumulation of vertical polarization P_y , during spin coherence time $\tau_{\text{SCT}} \sim 1000 \text{ s.}$

Statistical sensitivity:

- in the range 10^{-23} to 10^{-24} e cm for d(deuteron) possible.
- Systematic effects: Alignment of magnetic elements, magnet imperfections, imperfections of RF-Wien filter, etc.

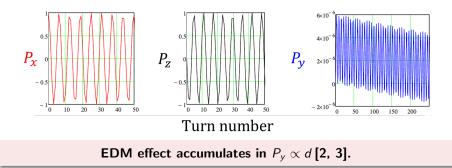
Buildup of $P_y(t)$ using RF Wien filter for deuterons


Model calculation at beam momentum $p_d = 970 \text{ MeV/c}$:

- G = -0.143, $\gamma = 1.126$, $f_s = |f_{rev}(\gamma G + K_{(=0)})| = 120.765 \text{ kHz}$
- Length of device: $L_{WF} = 1.55 \text{ m} [1]$.
- Assumed deuteron EDM: $d = 10^{-20} \,\mathrm{e\,cm}$.
- Electric RF field: $1000 \times E_{WF} = 2.145 \times 10^{6} \text{ MV/m} [1].$

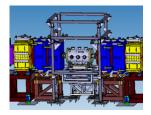
Buildup of $P_y(t)$ using RF Wien filter for deuterons

Model calculation at beam momentum $p_d = 970 \text{ MeV/c}$:


- G = -0.143, $\gamma = 1.126$, $f_s = |f_{rev}(\gamma G + K_{(=0)})| = 120.765 \text{ kHz}$
- Length of device: $L_{WF} = 1.55 \text{ m} [1]$.
- Assumed deuteron EDM: $d = 10^{-20} \,\mathrm{e\,cm}$.
- Electric RF field: $1000 \times E_{WF} = 2.145 \times 10^{6} \text{ MV/m} [1].$

Buildup of $P_y(t)$ using RF Wien filter for deuterons

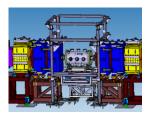
Model calculation at beam momentum $p_d = 970 \text{ MeV/c}$:


- G = -0.143, $\gamma = 1.126$, $f_s = |f_{rev}(\gamma G + K_{(=0)})| = 120.765 \text{ kHz}$
- Length of device: $L_{WF} = 1.55 \text{ m} [1]$.
- Assumed deuteron EDM: $d = 10^{-20} \,\mathrm{e\,cm}$.
- Electric RF field: $1000 \times E_{WF} = 2.145 \times 10^{6} \text{ MV/m} [1].$

Waveguide RF Wien filter

Device developed at IKP in cooperation between:

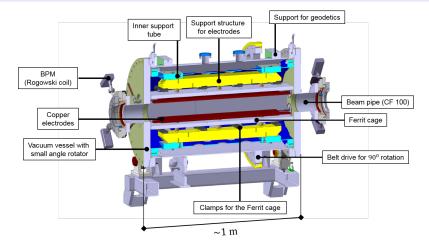
- **RWTH Aachen, Institute of High Frequency Technology:** Dirk Heberling, Dominik Hölscher, and PhD Student Jamal Slim
- ZEA-1 of Jülich: Helmut Soltner, Lars Reifferscheidt, Heidi Straatmann



Waveguide RF Wien filter

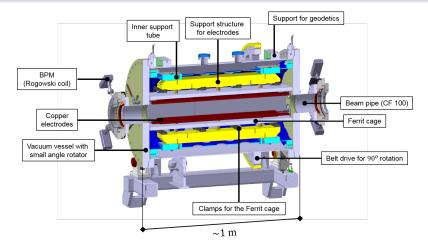
Device developed at IKP in cooperation between:

- **RWTH Aachen, Institute of High Frequency Technology:** Dirk Heberling, Dominik Hölscher, and PhD Student Jamal Slim
- ZEA-1 of Jülich: Helmut Soltner, Lars Reifferscheidt, Heidi Straatmann



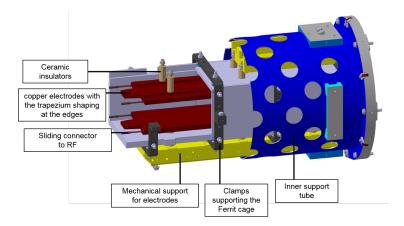
Device will be installed in PAX low- β section at COSY.

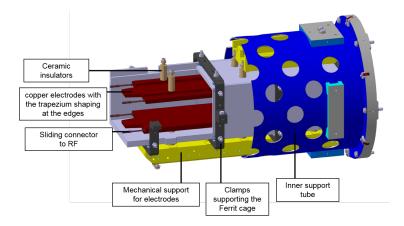
\Rightarrow Allows for systematic studies with respect to divergence of beam.


Features

Features of the waveguide RF Wien filter

Features


Features of the waveguide RF Wien filter


Aim was to build the best possible device, with respect to

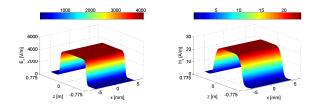
- electromagnetic performance [1] and mechanical tolerances [4].
- Excellent cooperation with RWTH Aachen University and ZEA-Jülich

Internal structure

Internal structure

Assembly completed,

including precision alignment in clean room.


Precursor Experiment at COSY

Electromagnetic field simulations [1]

Full-wave simulations

• using CST Microwave Studio^a.

^aComputer Simulation Technology AG, Darmstadt, Germany, http://www.cst.com

At an input power of 1 kW, magnetic and electric field integrals are ($\ell = 1.550\,\mathrm{m}$):

$$\int_{-\ell/2}^{\ell/2} \vec{B} dz = \begin{pmatrix} 2.73 \times 10^{-9} \\ 2.72 \times 10^{-2} \\ 6.96 \times 10^{-7} \end{pmatrix} \operatorname{Tmm}, \quad \int_{-\ell/2}^{\ell/2} \vec{E} dz = \begin{pmatrix} 3324.577 \\ 0.018 \\ 0.006 \end{pmatrix} \vee (1)$$

Resonance condition:

$$f_{\mathsf{WF}} = f_{\mathsf{rev}}\left(\gamma \mathsf{G} \pm \mathsf{K}
ight) \,, \mathsf{k} \in \mathbb{Z}.$$

Precursor Experiment at COSY

(2)

Resonance condition:

$$f_{\mathsf{WF}} = f_{\mathsf{rev}}\left(\gamma \mathsf{G} \pm \mathsf{K}
ight) \,, \mathsf{k} \in \mathbb{Z}.$$

Wien filter frequencies f_{WF}

• **Deuterons** at *T_d* = 236.0 MeV (970.0 MeV/c):

			harmonic <i>K</i> [kHz]					
β	G	γ	-2	-1	0	1	2	
0.459	-0.143	1.126	-1621.2	-871 .0	-120.8	629.4	1379.6	

(2)

Resonance condition:

$$f_{\mathsf{WF}} = f_{\mathsf{rev}}\left(\gamma \, \mathcal{G} \pm \mathcal{K}
ight) \,, k \in \mathbb{Z}.$$

Wien filter frequencies f_{WF}

• **Deuterons** at *T_d* = 236.0 MeV (970.0 MeV/c):

			harmonic K [kHz]					
β	G	γ	-2	-1	0	1	2	
0.459	-0.143	1.126	-1621.2	-871 .0	-120.8	629.4	1379.6	

• **Protons** at $T_p = 134.5 \text{ MeV} (520 \text{ MeV/c})$:

			harmonic <i>K</i> [kHz]					
β	G	γ	-4	-3	-2	-1	0	
0.485	1.793	1.143	-1543.9	-752.2	39.4	831.0	1622.7	

(2)

Resonance condition:

$$f_{\mathsf{WF}} = f_{\mathsf{rev}}\left(\gamma \mathsf{G} \pm \mathsf{K}
ight) \,, \mathsf{k} \in \mathbb{Z}.$$

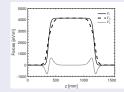
• **Deuterons** at *T_d* = 236.0 MeV (970.0 MeV/c):

			harmonic K [kHz]					
β	G	γ	-2	-1	0	1	2	
0.459	-0.143	1.126	-1621.2	-871.0	-120.8	629.4	1379.6	

• **Protons** at
$$T_p = 134.5 \text{ MeV} (520 \text{ MeV/c})$$
:

			harmonic <i>K</i> [kHz]				
β	G	γ	-4	-3	-2	- 1	0
0.485	1.793	1.143	-1543.9	-752.2	39.4	831.0	1622.7

Accomplished design goal of wave guide RF Wien filter and driving circuit [1]:

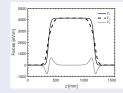

Provide a number of operational frequencies for p and d between 0 to 2 MHz.

(2

Lorentz force compensation [1]

Integral Lorentz force is of order of $-3 \, eV/m$:

- Electric force *F*_e, magnetic force *F*_m, and Lorentz force *F*_L inside RF Wien filter.
- Trapezoid-shaped electrodes determine crossing of electric and magnetic forces.



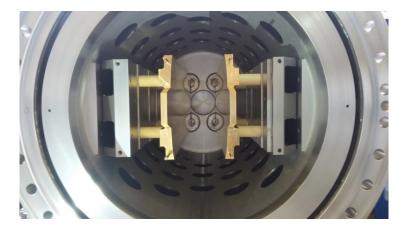
Lorentz force compensation [1]

Integral Lorentz force is of order of $-3 \, eV/m$:

- Electric force *F*_e, magnetic force *F*_m, and Lorentz force *F*_L inside RF Wien filter.
- Trapezoid-shaped electrodes determine crossing of electric and magnetic forces.

Lorentz force

$$\vec{F}_{\rm L} = q \left(\vec{E} + \vec{v} \times \vec{B} \right) \,, \tag{3}$$


- particle charge q, velocity vector $\vec{v} = c(0, 0, \beta)$, fields $\vec{E} = (E_x, E_y, E_z)$ and $\vec{B} = \mu_0(H_x, H_y, H_z)$, μ_0 vacuum permeability.
- For vanishing Lorentz force $\vec{F}_{L} = 0$, field quotient Z_q given by

$$E_x = -c \cdot \beta \cdot \mu_0 \cdot H_y \quad \Rightarrow \quad \left| Z_q = -\frac{E_x}{H_y} = c \cdot \beta \cdot \mu_0 \approx 173 \ \Omega \right|. \tag{4}$$

Precursor Experiment at COSY

Frank Rathmann

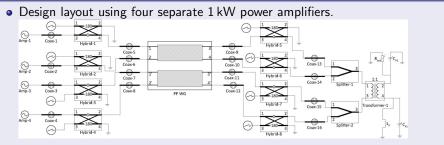
Device moved from ZEA to COSY hall for tests of driving circuit.

Clean room at COSY hall

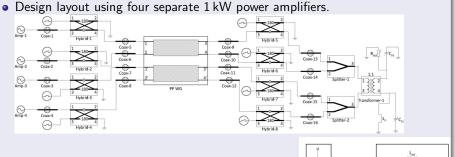
Commissioning of experimental setup:

- Test of vessel rotation under vacuum.
- RF tests with driving circuit.
- Control system.

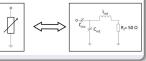
Clean room at COSY hall

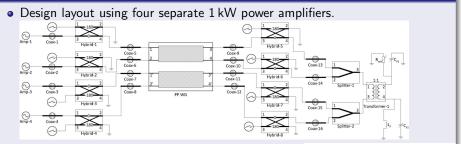

Commissioning of experimental setup:

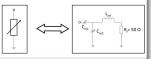
- Test of vessel rotation under vacuum.
- RF tests with driving circuit.
- Control system.



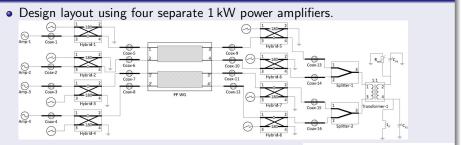
RF Wien filter installation at COSY will take place in April 2017.


Realization as strip line with load resistor and tunable elements (L's and C's):

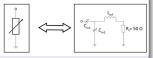

Realization as strip line with load resistor and tunable elements (L's and C's):


• Further refinement by replacing tunable resistor R_m with fixed R_f and variable L's and C's as well.

Realization as strip line with load resistor and tunable elements (L's and C's):

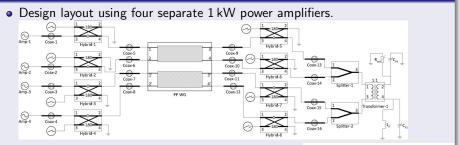


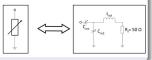
• Further refinement by replacing tunable resistor R_m with fixed R_f and variable L's and C's as well.



Most components ready, built by Fa. Barthel, http://www.barthel-hf.de:

Realization as strip line with load resistor and tunable elements (L's and C's):


• Further refinement by replacing tunable resistor R_m with fixed R_f and variable L's and C's as well.


Most components ready, built by Fa. Barthel, http://www.barthel-hf.de:

• Start with input power of $4 \times 1 \, \text{kW}$: $\int B_z dz = 0.109 \, \text{T} \, \text{mm}$ [see Eq. (1)].

Realization as strip line with load resistor and tunable elements (L's and C's):

• Further refinement by replacing tunable resistor R_m with fixed R_f and variable L's and C's as well.

Most components ready, built by Fa. Barthel, http://www.barthel-hf.de:

- Start with input power of $4 \times 1 \text{ kW}$: $\int B_z dz = 0.109 \text{ T mm}$ [see Eq. (1)].
- Upgrade later to $4 \times 2 \text{ kW}$: $\int B_z dz = 0.218 \text{ T mm}$.

Buildup of transverse polarization component due to EDM:

• Wanted EDM effect is produced by vertical magnetic field B_y of dipole magnets via $\vec{\beta} \times \vec{B}$ term in T-BMT equation.

Buildup of transverse polarization component due to EDM:

- Wanted EDM effect is produced by vertical magnetic field B_y of dipole magnets via $\vec{\beta} \times \vec{B}$ term in T-BMT equation.
- **Unwanted** MDM rotations that come from non-vertical magnetic fields $B_{x,z}$ of magnets mimic EDM and produce background.

Buildup of transverse polarization component due to EDM:

- Wanted EDM effect is produced by vertical magnetic field B_y of dipole magnets via $\vec{\beta} \times \vec{B}$ term in T-BMT equation.
- **Unwanted** MDM rotations that come from non-vertical magnetic fields $B_{x,z}$ of magnets mimic EDM and produce background.

Buildup of transverse polarization component due to EDM:

- Wanted EDM effect is produced by vertical magnetic field B_y of dipole magnets via $\vec{\beta} \times \vec{B}$ term in T-BMT equation.
- **Unwanted** MDM rotations that come from non-vertical magnetic fields $B_{x,z}$ of magnets mimic EDM and produce background.

Elements available to study systematics in precursor RF Wien filter experiment:

• Two harmonics $K = \pm 1$, at 630 and 871 kHz available from beginning.

Buildup of transverse polarization component due to EDM:

- Wanted EDM effect is produced by vertical magnetic field B_y of dipole magnets via $\vec{\beta} \times \vec{B}$ term in T-BMT equation.
- **Unwanted** MDM rotations that come from non-vertical magnetic fields $B_{x,z}$ of magnets mimic EDM and produce background.

- Two harmonics $K = \pm 1$, at 630 and 871 kHz available from beginning.
 - End of 2017 also harmonics at $K = \pm 2$ at 1380 and 1621 kHz available.

Buildup of transverse polarization component due to EDM:

- Wanted EDM effect is produced by vertical magnetic field B_y of dipole magnets via $\vec{\beta} \times \vec{B}$ term in T-BMT equation.
- **Unwanted** MDM rotations that come from non-vertical magnetic fields $B_{x,z}$ of magnets mimic EDM and produce background.

- Two harmonics $K = \pm 1$, at 630 and 871 kHz available from beginning.
 - End of 2017 also harmonics at $K = \pm 2$ at 1380 and 1621 kHz available.
- Feedback loops of RF Wien filter operational:

Buildup of transverse polarization component due to EDM:

- Wanted EDM effect is produced by vertical magnetic field B_y of dipole magnets via $\vec{\beta} \times \vec{B}$ term in T-BMT equation.
- **Unwanted** MDM rotations that come from non-vertical magnetic fields $B_{x,z}$ of magnets mimic EDM and produce background.

- Two harmonics $K = \pm 1$, at 630 and 871 kHz available from beginning.
 - End of 2017 also harmonics at $K = \pm 2$ at 1380 and 1621 kHz available.
- Feedback loops of RF Wien filter operational:
 - 1. Internal loop in RF circuit keeps E and B in phase.

Buildup of transverse polarization component due to EDM:

- Wanted EDM effect is produced by vertical magnetic field B_y of dipole magnets via $\vec{\beta} \times \vec{B}$ term in T-BMT equation.
- **Unwanted** MDM rotations that come from non-vertical magnetic fields $B_{x,z}$ of magnets mimic EDM and produce background.

- Two harmonics $K = \pm 1$, at 630 and 871 kHz available from beginning.
 - End of 2017 also harmonics at $K=\pm 2$ at 1380 and 1621 kHz available.
- Feedback loops of RF Wien filter operational:
 - 1. Internal loop in RF circuit keeps E and B in phase.
 - 2. Beam on axis in RF Wien filter (steerer loop with COSYLAB system).

Buildup of transverse polarization component due to EDM:

- Wanted EDM effect is produced by vertical magnetic field B_y of dipole magnets via $\vec{\beta} \times \vec{B}$ term in T-BMT equation.
- **Unwanted** MDM rotations that come from non-vertical magnetic fields $B_{x,z}$ of magnets mimic EDM and produce background.

- Two harmonics $K = \pm 1$, at 630 and 871 kHz available from beginning.
 - End of 2017 also harmonics at $K=\pm 2$ at 1380 and 1621 kHz available.
- Feedback loops of RF Wien filter operational:
 - 1. Internal loop in RF circuit keeps E and B in phase.
 - 2. Beam on axis in RF Wien filter (steerer loop with COSYLAB system).
 - 3. Minimized Lorentz force, thus β matched to $Z_q = -\frac{E_x}{H_v}$ [see Eq. (4)].

Buildup of transverse polarization component due to EDM:

- Wanted EDM effect is produced by vertical magnetic field B_y of dipole magnets via $\vec{\beta} \times \vec{B}$ term in T-BMT equation.
- **Unwanted** MDM rotations that come from non-vertical magnetic fields $B_{x,z}$ of magnets mimic EDM and produce background.

- Two harmonics $K = \pm 1$, at 630 and 871 kHz available from beginning.
 - End of 2017 also harmonics at $K = \pm 2$ at 1380 and 1621 kHz available.
- Feedback loops of RF Wien filter operational:
 - 1. Internal loop in RF circuit keeps E and B in phase.
 - 2. Beam on axis in RF Wien filter (steerer loop with COSYLAB system).
 - 3. Minimized Lorentz force, thus β matched to $Z_q = -\frac{E_x}{H_v}$ [see Eq. (4)].
 - 4. Phase-lock of RF Wien filter phase to COSY RF (see Jörg's talk).

Buildup of transverse polarization component due to EDM:

- Wanted EDM effect is produced by vertical magnetic field B_y of dipole magnets via $\vec{\beta} \times \vec{B}$ term in T-BMT equation.
- **Unwanted** MDM rotations that come from non-vertical magnetic fields $B_{x,z}$ of magnets mimic EDM and produce background.

- Two harmonics $K = \pm 1$, at 630 and 871 kHz available from beginning.
 - End of 2017 also harmonics at $K = \pm 2$ at 1380 and 1621 kHz available.
- Feedback loops of RF Wien filter operational:
 - 1. Internal loop in RF circuit keeps E and B in phase.
 - 2. Beam on axis in RF Wien filter (steerer loop with COSYLAB system).
 - 3. Minimized Lorentz force, thus β matched to $Z_q = -\frac{E_x}{H_v}$ [see Eq. (4)].
 - 4. Phase-lock of RF Wien filter phase to COSY RF (see Jörg's talk).
- Detune RF Wien filter by δ_{WF} and observe response (see [5]).

Buildup of transverse polarization component due to EDM:

- Wanted EDM effect is produced by vertical magnetic field B_y of dipole magnets via $\vec{\beta} \times \vec{B}$ term in T-BMT equation.
- **Unwanted** MDM rotations that come from non-vertical magnetic fields $B_{x,z}$ of magnets mimic EDM and produce background.

- Two harmonics $K = \pm 1$, at 630 and 871 kHz available from beginning.
 - End of 2017 also harmonics at $K=\pm 2$ at 1380 and 1621 kHz available.
- Feedback loops of RF Wien filter operational:
 - 1. Internal loop in RF circuit keeps E and B in phase.
 - 2. Beam on axis in RF Wien filter (steerer loop with COSYLAB system).
 - 3. Minimized Lorentz force, thus β matched to $Z_q = -\frac{E_x}{H_v}$ [see Eq. (4)].
 - 4. Phase-lock of RF Wien filter phase to COSY RF (see Jörg's talk).
- Detune RF Wien filter by δ_{WF} and observe response (see [5]).
- Phase variation Δ_{WF} of RF Wien filter (see Jörg's talk).

Elements available to study systematics of the precursor experiment:

Elements available to study systematics of the precursor experiment:

• RF Wien filter can be rotated around *z*-axis:

• Nominal mode: B_y and E_x , Rotated mode: B_x and E_y .

Elements available to study systematics of the precursor experiment:

- Nominal mode: B_y and E_x , Rotated mode: B_x and E_y .
- Small angle rotations of few degree in situ, large angles without breaking vacuum, needs recabling.

Elements available to study systematics of the precursor experiment:

- Nominal mode: B_y and E_x , Rotated mode: B_x and E_y .
- Small angle rotations of few degree in situ, large angles without breaking vacuum, needs recabling.
- Spin tune mapping χ_1 versus χ_2 using distortion-free elements (see [5]).

Elements available to study systematics of the precursor experiment:

- Nominal mode: B_y and E_x , Rotated mode: B_x and E_y .
- Small angle rotations of few degree in situ, large angles without breaking vacuum, needs recabling.
- Spin tune mapping χ_1 versus χ_2 using distortion-free elements (see [5]).
- Mapping of resonance strength $\epsilon \propto (\vec{c} \times \vec{w})$ as function of χ_1 and χ_2 allows one to align \vec{c} along \vec{w} ($\epsilon \simeq 0$) (see also [5]).

Elements available to study systematics of the precursor experiment:

• RF Wien filter can be rotated around z-axis:

- Nominal mode: B_y and E_x , Rotated mode: B_x and E_y .
- Small angle rotations of few degree in situ, large angles without breaking vacuum, needs recabling.
- Spin tune mapping χ_1 versus χ_2 using distortion-free elements (see [5]).
- Mapping of resonance strength $\epsilon \propto (\vec{c} \times \vec{w})$ as function of χ_1 and χ_2 allows one to align \vec{c} along \vec{w} ($\epsilon \simeq 0$) (see also [5]).

Elements available to study systematics of the precursor experiment:

• RF Wien filter can be rotated around z-axis:

- Nominal mode: B_y and E_x , Rotated mode: B_x and E_y .
- Small angle rotations of few degree in situ, large angles without breaking vacuum, needs recabling.
- Spin tune mapping χ_1 versus χ_2 using distortion-free elements (see [5]).
- Mapping of resonance strength $\epsilon \propto (\vec{c} \times \vec{w})$ as function of χ_1 and χ_2 allows one to align \vec{c} along \vec{w} ($\epsilon \simeq 0$) (see also [5]).

Future toolbox elements:

• By end of 2017, alignment of COSY elements to 0.1 - 0.2 mm.

Elements available to study systematics of the precursor experiment:

• RF Wien filter can be rotated around z-axis:

- Nominal mode: B_y and E_x , Rotated mode: B_x and E_y .
- Small angle rotations of few degree in situ, large angles without breaking vacuum, needs recabling.
- Spin tune mapping χ_1 versus χ_2 using distortion-free elements (see [5]).
- Mapping of resonance strength $\epsilon \propto (\vec{c} \times \vec{w})$ as function of χ_1 and χ_2 allows one to align \vec{c} along \vec{w} ($\epsilon \simeq 0$) (see also [5]).

- By end of 2017, alignment of COSY elements to 0.1 0.2 mm.
 - Beam-based alignment procedure to obtain BPM positions to same accuracy.

Elements available to study systematics of the precursor experiment:

- RF Wien filter can be rotated around z-axis:
 - Nominal mode: B_y and E_x , Rotated mode: B_x and E_y .
 - Small angle rotations of few degree in situ, large angles without breaking vacuum, needs recabling.
- Spin tune mapping χ_1 versus χ_2 using distortion-free elements (see [5]).
- Mapping of resonance strength $\epsilon \propto (\vec{c} \times \vec{w})$ as function of χ_1 and χ_2 allows one to align \vec{c} along \vec{w} ($\epsilon \simeq 0$) (see also [5]).

- By end of 2017, alignment of COSY elements to 0.1 0.2 mm.
 - Beam-based alignment procedure to obtain BPM positions to same accuracy.
- Dipole backleg windings:

Elements available to study systematics of the precursor experiment:

• RF Wien filter can be rotated around z-axis:

- Nominal mode: B_y and E_x , Rotated mode: B_x and E_y .
- Small angle rotations of few degree in situ, large angles without breaking vacuum, needs recabling.
- Spin tune mapping χ_1 versus χ_2 using distortion-free elements (see [5]).
- Mapping of resonance strength $\epsilon \propto (\vec{c} \times \vec{w})$ as function of χ_1 and χ_2 allows one to align \vec{c} along \vec{w} ($\epsilon \simeq 0$) (see also [5]).

- By end of 2017, alignment of COSY elements to 0.1 0.2 mm.
 - Beam-based alignment procedure to obtain BPM positions to same accuracy.
- Dipole backleg windings:
 - Every COSY dipole equipped with backleg winding. When activated individually, try to relate unwanted MDM rotations to individual dipoles.

Elements available to study systematics of the precursor experiment:

• RF Wien filter can be rotated around z-axis:

- Nominal mode: B_y and E_x , Rotated mode: B_x and E_y .
- Small angle rotations of few degree in situ, large angles without breaking vacuum, needs recabling.
- Spin tune mapping χ_1 versus χ_2 using distortion-free elements (see [5]).
- Mapping of resonance strength $\epsilon \propto (\vec{c} \times \vec{w})$ as function of χ_1 and χ_2 allows one to align \vec{c} along \vec{w} ($\epsilon \simeq 0$) (see also [5]).

- $\bullet\,$ By end of 2017, alignment of COSY elements to $0.1-0.2\,\text{mm}.$
 - Beam-based alignment procedure to obtain BPM positions to same accuracy.
- Dipole backleg windings:
 - Every COSY dipole equipped with backleg winding. When activated individually, try to relate unwanted MDM rotations to individual dipoles.
- Development of orbit-distortion-free helical dipole magnets to map magnetic ring imperfections.

References

- J. Slim et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 828, 116 (2016).
- [2] F. Rathmann, A. Saleev, and N. N. Nikolaev, J. Phys. Conf. Ser. 447, 012011 (2013).
- [3] W. M. Morse, Y. F. Orlov, and Y. K. Semertzidis, Phys. Rev. ST Accel. Beams 16, 114001 (2013).
- [4] J. Slim et al., Polynomial Chaos Expansion method as a tool to evaluate and quantify field homogeneities of a novel waveguide RF Wien Filter, 2016, http://lanl.arxiv.org/abs/1612.09235.
- [5] A. Saleev et al., Spin tune mapping as a novel tool to probe the spin dynamics in storage rings, 2017, http://lanl.arxiv.org/abs/1703.01295.