

Polarized beams and spin manipulation at COSY

13.March 2017, Bernd Lorentz IKP4-Forschungszentrum Jülich EDM kick-off meeting

Outline

> COSY

- > Spin resonances
- > Polarimetry
 - **Spin Manipulation**

Cooler Synchrotron (COSY)

- **COSY** accelerates and stores (polarized) protons / deuterons between 300/600 and 3700 MeV/c
- 4 internal and 3 external experimental areas
- Electron cooling at low momenta (100 kV)
- new e cooler: upto max. momentum (2 MV, under commissioning)
- Stochastic cooling at high momenta (β >0.8)

Spin Motion

Thomas-BMT equation (Thomas [1927], Bargmann, Michel, Telegdi [1959]):

$$\frac{dS}{dt} = \frac{e}{\gamma m} \vec{S} x \left[(1 + \gamma G) \vec{B}_{\perp} + (1 + G) \vec{B}_{\parallel} \right]$$
Precession Equation in Laboratory Frame

Number of spin rotation per turn: $v_p = \gamma G$

$$G = \frac{g-2}{2}, G_p = 1.7928473, G_{\bar{p}} = 1.800, G_d = -0.142987$$

Imperfection resonance:

Intrinsic resonance:

$$\gamma G = k$$

k: integer

Field and positioning errors of magnets Resonance strength $\sim y_{rms}$

$$\gamma G = (kP \pm Q_y)$$

Vertical focusing fields Resonance strength $\sim \sqrt{\varepsilon_v}$ P: superperiodicity Q_v : vertical tune

13.03.2017

Spin Resonances in Cosy

Protons

Momentum	Kinetic	Imperfection	Intrinsic
GeV/c	energy GeV	resonance $\gamma \cdot G = \dots$	resonance $\gamma \cdot G = \dots \pm Q_y$
0.464	0.108	2	
0.835	0.318		6-
0.986	0.422		-1+
1.259	0.632	3	
1.512	0.841		7-
1.634	0.946		0+
1.871	1.155	4	
2.103	1.364		8-
2.217	1.469		1+
2.443	1.678	5	
2.666	1.888		9-
2.776	1.992		2+
2.997	2.202	6	
3.215	2.411		10-
3.324	2.516		3+

13.03.2017

Spin Resonances in Cosy

Protons

Deuterons

13.03.2017

Mitglied der Helmholtz-Gemeinschaft

EDDA Polarimeter

- two-layered cylindrical scintillator structure
 - Outer Layer (\rightarrow trigger!)
 - **D**: 32 overlapping slabs of triangular cross-section $(\Delta \phi = 11.25^{\circ})$
 - **F,R:** 2x29 semirings ($\Delta \theta_{\text{lab}} = 2.5^{\circ}$) left semirings $\phi \in [-90^{\circ}, 90^{\circ}]$ right semirings $\phi \in [90^{\circ}, 270^{\circ}]$
 - Inner Layer (H): 640 scintillating fibers \rightarrow vertex reconstruction ($\sigma \approx 1$ mm)
- Acceptance: $\theta_{\text{lab}} \in [10^o, 72^o]$
- Targets: CH₂ and C fiber targets, polarized H and D atomic beam target.

Designed for left right coincidences, best suited for proton polarimetry over the full COSY energy range

(The EDDA experiment measured p-p elastic scattering cross sections and spin correlation parameters) fast polarimetry (during acceleration)

EDDA Polarimeter

- two-layered cylindrical scintillator structure
 - Outer Layer (\rightarrow trigger!)
 - **D**: 32 overlapping slabs of triangular cross-section $(\Delta \phi = 11.25^{\circ})$
 - **F,R:** 2x29 semirings $(\Delta \theta_{\text{lab}} = 2.5^{\circ})$ left semirings $\phi \in [-90^{\circ}, 90^{\circ}]$ right semirings $\phi \in [90^{\circ}, 270^{\circ}]$
 - Inner Layer (H): 640 scintillating fibers \rightarrow vertex reconstruction ($\sigma \approx 1$ mm)
- Acceptance: $\theta_{\text{lab}} \in [10^o, 72^o]$
- Targets: CH₂ and C fiber targets, polarized H and D atomic beam target.

Designed for left right coincidences, best suited for proton polarimetry over The full COSY energy range (The EDDA experiment measured p-p elastic scattering cross sections and spin correlation parameters) fast polarimetry (during acceleration)

extension of polarimetry to lower p momenta

EDDA Polarimeter

- two-layered cylindrical scintillator structure
 - Outer Layer (\rightarrow trigger!)
 - **D**: 32 overlapping slabs of triangular cross-section $(\Delta \phi = 11.25^{\circ})$
 - **F,R:** 2x29 semirings $(\Delta \theta_{\text{lab}} = 2.5^{\circ})$ left semirings $\phi \in [-90^{\circ}, 90^{\circ}]$ right semirings $\phi \in [90^{\circ}, 270^{\circ}]$
 - Inner Layer (H): 640 scintillating fibers \rightarrow vertex reconstruction ($\sigma \approx 1$ mm)
- Acceptance: $\theta_{\mathrm{lab}} \in [10^o, 72^o]$
- Targets: CH₂ and C fiber targets, polarized H and D atomic beam target.

Designed for left right coincidences,
best suited for proton polarimetry over the full COSY energy range (The EDDA experiment measured p-p elastic scattering cross sections and spin correlation parameters) fast polarimetry (during acceleration)

also usable for deuteron and horizontal polarization measurement EDM kick-off, B.Lorentz (upto now used by JEDI) 9

Polarized Proton Beam

Polarization during acceleration

Tune-Jump Quadrupole

- Copper coil air core
- · Length 0.6 m
- Max. current ±3100 A
- Max gradient 0.45
- T/m
- Rise time 10 µs,
- Fall time 10 to 40 ms

polarization 50 <u>9-0</u> 7-Q $0+Q_v$ $\gamma G=5$ $2+Q_v$ 0 $\gamma G=6$ 8-Q, \rightarrow tune jumps $\gamma G=4$ \rightarrow vertical orbit 10-Q -0.5 excitation Achieved: 10¹⁰ protons with P > 75% at 3.3 GeV/c 1500 2500 2000 3000 momentum (MeV/c)

Spin Flipping

Reversal of the polarization of the stored beam by crossing an artificial depolarizing resonance created by transverse RFfields (dipole or solenoid).

$$f_{res} = (k + \gamma G) f_0$$

Extensive studies carried out by Spin@Cosy collaboration (papers can be found in Physical Review Special Topics - Accelerators and Beams)

In use today: water cooled air core RF-solenoid, rf-power: ~kW, B-fields: ~mT (see below)

RF-B Dipole

ferrite blocks

8 turn watercooled copper tubes in LC resonant circuit 2.4 kV rms @ 902.6 kHz 0.46 T mm

60

dipole frequency sweeps across resonance Multiple crossing of resonance

Achieving 99.9% Proton Spin-Flip Efficiency for 2.1 GeV/c protons, M.A. Leonova, PRL 93, 224801 (2004)

28 turn coil, watercooled copper tubes 5.7 kV rms 0.5-1.5 MHz 0.67 Tmm

RF Solenoid

some example, 1.85 GeV/c deuterons, measurement with EDDA, 97 % flipping efficiency

Froissart Stora Sweep, sweep time varried

Extensive studies carried out by Spin@Cosy collaboration (papers can be found in Physical Review Special Topics - Accelerators and Beams)

Other applikations

ANKE: η -mass determination in d p -> ³He η at Anke Use depolarizing resonance for accurate determination of beam momentum

 $\Delta p/p < 6 \ 10^{-5}$ at 13 deuteron momenta between 3100 and 3200 MeV/c P.Goslawski et al., Physical Review Special Topics - Accelerators and Beams (Vol.13, No.2, 2010)

use for JEDI: preparing polarization in the horizontal plane from intitial vertical polarization (90 degree rotation)

EDM kick-off, B.Lorentz

RF-B Dipole

ferrite blocks

two electrodes in vacuum camber

RF-E Dipole

distance 54 mm, length 580 mm

coil: 8 windings, length 560 mm

shielding Box

H

ceramic beam chamber two separate resonance circuits

Field Compensation

- measurement on betatron
 frequency for max. sensitivity
- polarimeter target directly above beam-pipe-center limits acceptance
- ⇒ exited part of beam is removed
- diagnosis with COSY beam current transformer
- determination of amplitudes and phase for Lorentz force compensation down to per mille!

from S.Mey

Phase Scan @ 30% Output Amplitude, Natural Beamloss (38.2±1.1)% fQy = 871.52 kHz, f = 871.4282 kHz, Î RF-B = (232.6±0.6) mA, Û RF-E = (132.0±0.3) V

Amplitude Scan @ 30% Output Amplitude, Natural Beamloss (38.2±1.1)%

COSY as Spin Physics R&D facility

COSY as EDM test facility

The team: no names here, the list would be too long

everybody in IKP-4 is needed to make these things work

Thank you for your attention

EDM kick-off, B.Lorentz

EDM kick-off, B.Lorentz

Siberian Snake

For longitudinal beam polarization a siberian snake solenoid was aquired

- 4.7 Tm superconducting solenoid
- on site at Jülich
- lab test ongoing
- preparation for installation in progress
- 2 weeks of commissioning beamtime recomended by Cosy Beam Advisory Committee (CBAC)

Longitudinal spin filtering possible

