Mitglied

COSY orbit control

EDM kick-off meeting March 13, 2017 | C. Weidemann

Precursor experiment at COSY

Reminder:

- Use of spin-filter method (talk by Frank Rathmann)
- EDMs introduce vertical spin component in a horizontally polarized beam

$$\frac{d\vec{S}}{dt} = \left(\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM}\right) \times \vec{S} = \left(\frac{q}{m\gamma}\gamma \boldsymbol{G}\vec{B} + \frac{q\boldsymbol{\eta}}{2m}\vec{\beta} \times \vec{B}\right) \times \vec{S}$$

- Measurement of vertical polarization buildup S_{v}
- Misaligned magnets/distorted orbit leads to polarization buildup (fake signal)

Precursor experiment at COSY - Systematics

Correct orbit to minimize polarization buildup

COSY

COSY	
Circumference	183.47 m
Particles	(Un)polarized p and d
Type of injection	H^- , D^- stripping injection
Current at source exit	Polarized: 15 μ A
	Unpolarized: $100-200 \ \mu A$
Momentum range	0.3–3.65 GeV/c
Betatron tune range	3.55–3.7 in both planes
Phase-space cooling	Electron and stochastic
Beam position monitors	31 (horizontal and vertical)
Steerers	23 (horizontal), 21 (vertical)
Straight sections	Length: 40 m
	4×4 quadrupole magnets
	4 sextupole magnets
	Beam pipe diameter: 0.15 m
Arc sections	Length: 52 m
	3×4 dipole magnets
	3×4 quadrupole magnets
	5 sextupole magnets
	Beam pipe in dipole magnets:
	height: 0.06 m, width: 0.15 n

Orbit correction

Orbit response matrix measurement

$$M_{ij} = \frac{\sqrt{\beta_i \cdot \beta_j}}{2\sin(\pi\nu)} \cdot \cos(|\varphi_i - \varphi_j| - \pi\nu)$$

Beam position ORM Corrector magnet at BPMs $\begin{pmatrix} \vec{x} \\ \vec{y} \end{pmatrix} = M \begin{pmatrix} \vec{\theta}_x \\ \vec{\theta}_y \end{pmatrix}$

SVD analysis for matrix inversion

$$\Delta \begin{pmatrix} \overrightarrow{\theta_x} \\ \overrightarrow{\theta_y} \end{pmatrix} = M^{-1} \begin{pmatrix} \vec{x} \\ \vec{y} \end{pmatrix}_{uncorrected}$$

- Automatic ORM measurement set up
- ORM derivation from model calibrated

EDM kick-off meeting

Orbit correction - Limitations

Iterative correction allows to achieve rms values of 1.6mm

Limitations:

Positioning of quadrupole magnets

(misalignment of 0.3-0.5 mm already explains current correction limits)

Simulated Δy_{RMS} in the presence of misaligned quadrupole magnets. These misalignments are randomly generated assuming different Gaussian widths σ_{y} .

- Realignement of dipole and quadrupole magnets in progress

EDM kick-off meeting

Orbit correction - Limitations

Iterative correction allows to achieve rms values of 1.6mm

Limitations:

- Positioning of quadrupole magnets
- Precision of COSY model (if ORM is deduced from model)
- (minimal steerer change might be of relevance for lowest energies)
- BPM resolution

- Tedious effort for calibration
- Electronics EOL
- BPM system found to not fulfill the JEDI requirements, especially close to 0 position.

Courtesy: F.Hinder

BPM Electronic Replacement

Libera Hadron

- Ready-to-use system, based on 250 MHz ADCs and FPGA fast data processing.
- Used within the FAIR-project, knowledge has to be in-house anyway, software development & upgrades through FAIR-project possible
- Libera Site Acceptance Test done in Dec. 2016

4-channel BPM module. One Libera Hadron chassis may host up to 4 such modules.

Event receiver module: Used for synchronization and triggering purposes (Trigger, Postmortem, RF Clock, Reference clock); supports MRF and WR event decoding and distribution.

BPM Electronic Replacement

Libera Hadron

- Ready-to-use system, based on 250 MHz ADCs and FPGA fast data processing.
- Used within the FAIR-project, knowledge has to be in-house anyway, software development & upgrades through FAIR-project possible
- Libera Site Acceptance Test done in Dec. 2016
- Parallel developments before commissioning:
 - 1. Common signals paths (Trigger, RF-ref, Sync)
 - 2. Network Connection
 - 3. Pre/Main Amplifiers and Cabling
 - 4. Control system integration
- Commissioning Beam Time preliminary scheduled in July 2017

Control System Upgrade

- Current COSY Control System completely self developed
 - No community support or shared development
- Therefore decision was made to upgrade Control System
 - First only for new systems like orbit control
- EPICS / Control System Studio was chosen
- Decision was made to speed up the progress by contracting a company
 - Technical design report for COSY upgrade
- Staged approach:
 - 0) Orbit feedback using old COSY components (beam stability)
 - Analog BPM system integration
 - Correction dipole function generators integration
 - New control system
 - Archiver incl. interface and database
 - Git service for release management
 - GUI (Control System Studio)
 - Training

Control System Upgrade

- Current COSY Control System completely self developed
 - No community support or shared development
- Therefore decision was made to upgrade Control System
 - First only for new systems like orbit control
- EPICS / Control System Studio was chosen
- Decision was made to speed up the progress by contracting a company
 - Technical design report for COSY upgrade
- Staged approach:
 - 0) Orbit feedback using old COSY components
 - 1) Details to be negotiated
 - Upgrade to LIBERA BPM readout
 - Timing system ?

Orbit Feedback incl. GUI

EDM kick-off meeting

Orbit Feedback incl. GUI

Correction of artificially created local orbit bump

EDM kick-off meeting

Correction magnet strength during correction

c.weidemann@fz-juelich.de

13. March 2017

EDM kick-off meeting

Correction towards 0-orbit

13. March 2017

EDM kick-off meeting

Correction towards 0-orbit

Summary

- EDM experiment requires a beam orbit RMS < 100 μm
- Realignment of quadrupole magnets in progress
- Existing BPM electronics is struggling to deliver this accurate information, especially around 0 position
- Upgrade using commercial system LIBERA Hadron
- Along upgrade of the control system using EPICS
- Implementation of an orbit feedback in CSS
 - Almost finished for the existing BPM system
- Once LIBERA system is commissioned, replacing BPM measurement module in orbit control system
- Planned to be fully functional late 2017
- Control system for other subsystems

Acknowledgment:

M. Bai, C. Böhme, F. Hinder, V. Kamerdzhiev, B. Lorentz, J. Malec (CosyLab),

A. Marusic (BNL), M. Rosenthal, T. Sefzick, M. Simon

13. March 2017

EDM kick-off meeting

