High IntensityPolarized Ion Sources

Anatoli Zelenski, BNL

- Polarized proton (deuteron) H⁻(D⁻) sources.
- Polarized ³He⁺⁺ ion sources.
 Summary.

EDM Collaboration meeting, March 13, 2017

Parity-violation experiment at TRIUMF in pp-scattering at 221 MeV

OPPIS- polarized H-ion source; SOL- 1,2 –spin-precession solenoids; IPM- beam profilometers; PPM- scanning polarimeters; TRIC-1,2ionization chambers – beam current detectors.

Pulsed OPPIS at TRIUMF, 1997-99. Second generation.

A pulsed H⁻ ion current of a 10 mA was obtained in 1999.

Optically Pumped Polarized H⁻ Ion Source (OPPIS) at TRIUMF

Beam current and polarization vs. Rb-vapor thickness

1.0 mA x 10 μ s \rightarrow 6 x 10¹⁵ x 10⁻⁵ =6 x10¹⁰ H⁻ ions/pulse

Strip-Injection of longitudinally polarized H⁻ ion beam

RHIC Polarized beam in Run 2013-15-17

Rb-90deg, Booster input-9.3.10¹¹, 200 Mev-83.8%

AGS	at Scans Target	Maasuramants Emittans	a Mascuramante
Summary Large	et stans Target	Measurements Emittant	e measurements
AGS			
Target T	arget1	Orientation	Vertical
Measurement Tyr	10		
-		Start Position	100000
Fixed Target		End Position	109000
O Profile By Sweep		Velocity	6800
		Insertion Time	950000
		Retraction Time	3220000
		Current Velocity	0
		Current Position	95000
		Peak Position	105667
	Polariz	ation in AGS	o∼ 65-7
Polarization Meas	surement Result		
65.49 +/- 2.07			
	x ² /		
	~ /	ndf = 0.00	
	rur	ndf = 0.00	
	rur Jun 1, 20	ndf = 0.00 ND: 61129 D14 12:51:32 PM	
	rur Jun 1, 20 Source Polariza	ndf = 0.00 ND: 61129 D14 12:51:32 PM tion: 83.78 +/- 1.07	
	rur Jun 1, 20 Source Polariza	ndf = 0.00 ND: 61129 D14 12:51:32 PM tion: 83.78 +/- 1.07	
Analysis	Jun 1, 20 Source Polariza	ndf = 0.00 nID: 61129 014 12:51:32 PM tion: 83.78 +/- 1.07	

Run 13 H-jet polarimeter, physics stores

Polarization measurements at 255 GeV in H-jet polarimeter, Run-2013, April-25-30

The RHIC OPPIS after upgrade (2011-12) with atomic hydrogen injector. Completed for 2013 Run.

SPIN -TRANSFER POLARIZATION IN PROTON-Rb COLLISIONS.

Laser beam is a powerfull primary source of angular momentum: 10 W (795 nm) \rightarrow 4•10¹⁹ hv/sec \rightarrow 2 A, H⁰+ equivalent intensity. Feasibility of Multi-ampere polarized beams.

New OPPIS with atomic H⁰ injector layout

CP1 TMP1

"Fast Atomic Beam Source", BINP 2011

Within the Na-jet ionizer acceptance.

FABS 4-grid spherical Ion Optical System (IOS).

1820 holes ,5 cm in diameter 3-5 A of proton beam

Residual un-polarized H^o beam component suppression by the energy separation

He-ionizer cell and three-grid energy separation system

H⁻ beam acceleration to 35 keV at the exit of Na-jet ionizer cell.

Na-jet cell is isolated and biased to – 32 keV. The H⁻ beam is accelerated in a two-stage acceleration system.

Sodium-jet ionizer cell.

Transversal vapor flow in the N-jet cell. Reduces sodium vapor losses for 3-4 orders of magnitude, which allow the cell aperture increase up to 3.0 cm .

NL ~2·10¹⁵ atoms/cm² L ~ 2-3 cm

Reservoir– operational temperature. Tres. ~500 °C. Nozzle – Tn ~500 °C.

Collector- Na-vapor condensation: Tcoll.~120°C Trap- return line. T ~ 120 – 180 °C.

Low Energy Beam Transport line.

Polarized injector, 200 MeV Linac and HEBT

Febr. 17, 2016. 750 uA polarized current out of the Linac

FIG. 1. Laboratory differential cross sections and analyzing powers, as a function of laboratory scattering angle, measured for 200 MeV polarized protons elastically scattered from ¹²C and ¹³C.

Layout of the 200 MeV proton polarimeter, (2010)

Detector and variable absorber setup for 200 MeV proton beam.

Signal amplitude distribution in the first detector

Signal amplitude distribution in the 2-nd detector

Signal amplitude distribution in the 3-rd detector

84.5% polarization was measured using WFD.

Polarization stability ~12 hrs, April 19

Polarimetry at RHIC

- Lamb-shift polarimeter at the source energy.
- Absolute 200 MeV polarimeter after the Linac.
- P-Carbon CNI polarimeters in AGS and RHIC
- Absolute H-jet polarimeter in RHIC.

Polarized proton beams in high-energy accelerators and colliders

- High intensity polarized negative H⁻, D⁻ sources.
- Optically Pumped Polarized Ion Source (OPPIS) for RHIC and Atomic Beam Source (ABS) with charge exchange ionizer at COSY, IUCF and NICA (Dubna).
- Charge-exchange (strip) injection.
- Equal (maximum possible) intensity of polarized and un-polarized beams in RHIC and COSY.

ABS: colliding beam ionizer and nearly resonant charge-exchange

Direct conversion of polarized atoms into polarized negative ions: (Haeberli, 1968)

Colliding beam ionizer:

H⁰↑ +Cs⁰ ⇒ H⁻↑ + Cs⁺ (conversion efficiency ~ 5.10⁻³) 50 μA pulsed H⁻↑ beam (R. Gebel et. al. , COSY)

 Resonant charge-exchange plasma ionizer: H⁰↑ + D⁻ ⇒ H⁻↑ + D⁰ (conversion efficiency ~ 0,12) 4 mA of pulsed H⁻↑ (Belov et. al., INR RAS)

COSY's Polarized Ion Source

 $\vec{\mathrm{H}}^{0}(\vec{\mathrm{D}}^{0}) + \mathrm{Cs}^{0} \rightarrow \vec{\mathrm{H}}^{-}(\vec{\mathrm{D}}^{-}) + \mathrm{Cs}^{+}$

Ref.: Haeberli , NIM 62(1968)

INR RAS source of polarized H⁻ ions

DEUTERIUM

PLASMA SOURCE

ION PUMP

WEAK FIELD

RF TRANSITION UNIT

$H^{0}\uparrow + D^{-} \Rightarrow H^{-}\uparrow + D^{0}$

EXTRACTION Peak H⁻ ion current - 4 mA ELECTRODES SEPARATING MAGNETS Polarization ~ 0.9 BENDING/ DISSOCIATOR ANALYSING MAGNET plasma SKIMMER charge-exchange r∉glon Unpolarized D^{-} ion current Np $60 \text{ mA} (\sim 20 \text{ mA/cm}^2)$ Lq N2 Pulse duration (FWHM) – SOLENDID 3500 l/s TURBD-TWO-STAGE 170 µs MOLECULAR PUMP 2×4000 1/s CONVERTER 3500 l/s TURBO-4000 l/s ION PUMPS

MOLECULAR PUMP

MASS

SPECTROMETER

Rep. Rate 5 Hz

(Belov et. al, 2007)

Belov, SPIN2012, Dubna

Plasma generator for resonant charge-exchange ionizer

- In order to produce polarized negative hydrogen ions it was necessary to have deuterium plasma consisting mainly from D⁺ and D⁻ ions because slow polarized H⁻ ions can be easily destroyed in collisions with plasma electrons.
- Plasma injector producing deuterium plasma enriched by D⁻ ions with surface-plasma converter has been developed at INR.

CIPIOS polarized H⁻ ion source with INR plasma ionizer at IUCF

The polarized ions source for NICA accelerator complex

In October-November 2016 Run, D⁺ beam current of 1.7-2.0 mA was produced and accelerated In Nuclotron. D polarization ~75-90% of maximum value.

EBIS upgrade with new "injector" solenoid for polarized 3He⁺⁺ ion production.

BNL-MIT collaboration

RHIC's Electron Beam Ion Source

- 5 T Solenoid B Field; 1.5 m Ion Trap
- 20 keV electrons up to 10 A, 575 A/cm² Current Density
- Any species, switch between species in 1 sec

Summary

- The present high intensity OPPIS and ABS sources provide required beam intensity for present and future pp, and ep Colliders.
- Accelerated to energy 233 MeV polarized H⁻ ion beam is an ideal injector for Proton-EDM storage ring.
- •In the future RHIC, eRHIC will require high-intensity ³He⁺⁺ ion beams. The high intensity ³He⁺⁺ ion source on the basis of new EBIS injector is under development at RHIC.