pEDM kick-off meeting, CERN, March 13-14, 2017

State-of-the-art SQUIDs

Andrei Matlashov

Center for Axion and Precision Physics, Institute for Basic Science, Daejeon, Korea

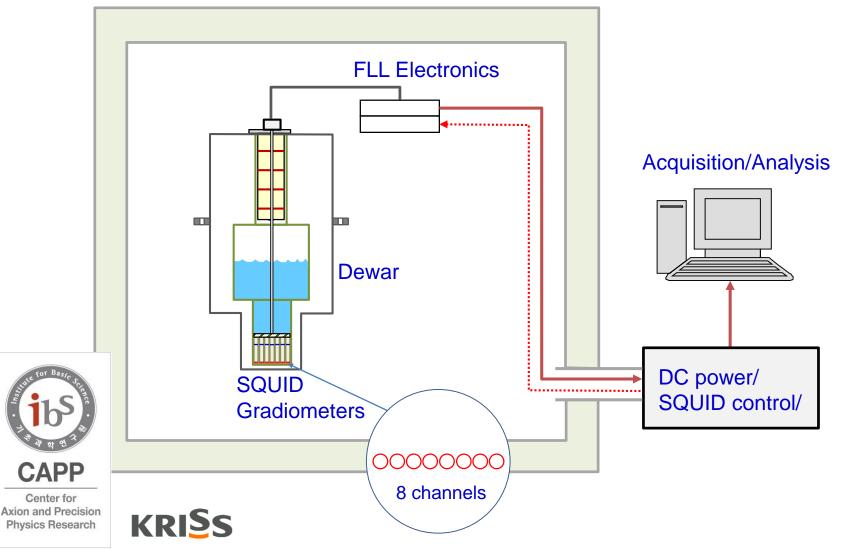
andrei@ibs.re.kr

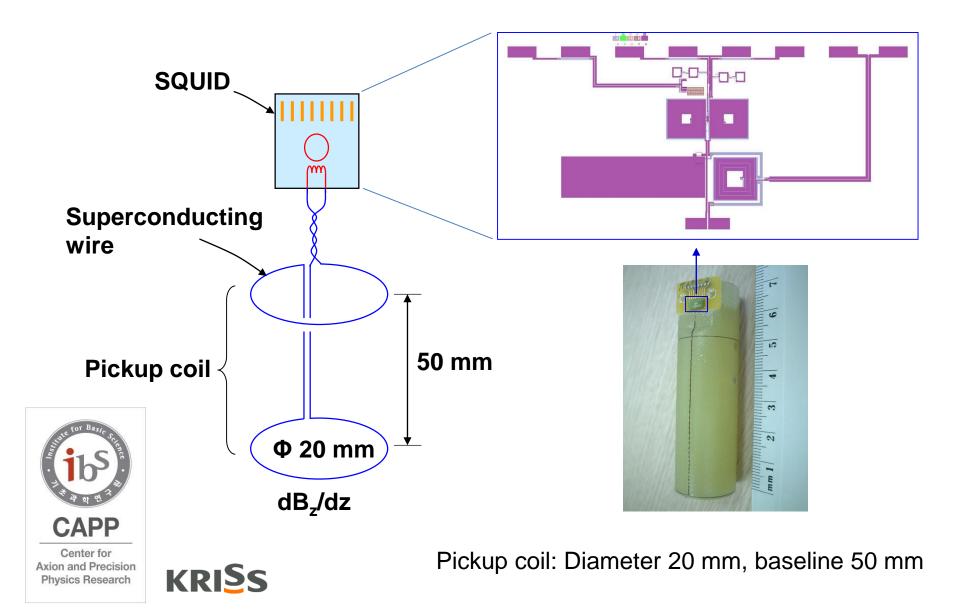
Andrei Matlashov, Ph.D.

Institute of Radio Engineering and Electronics, Moscow1982 – 1994Conductus Inc., Sunnyvale, California, USA1994 – 1997Los Alamos National Laboratory, Los Alamos, NM, USA1997 – 2016

Center for Axion and Precision Physics, Institute for Basic Science, Daejeon, Korea <u>since January 16, 2017</u>

35 years in SQUID Instrumentation:

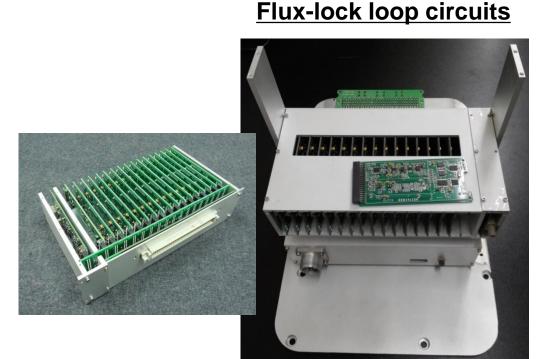

Magneto-Encephalography (MEG) Systems Magneto-Cardiography (MCG) Systems Ultra Low Field Nuclear Magnetic Resonance (ULF NMR) Ultra Low Field Magnetic Resonance Imaging (ULF MRI) Superparamagnetic Relaxation with Nanoparticles (SPMR) Neutron EDM experiments at LANL


All SQUID-involved projects and experiments at CAPP

G1 Beam Position Monitoring SQUID system


Magnetically shielded room

Axial Wire-Wound First-Order Gradiometers



3-Layer Magnetically Shielded Room at CAPP

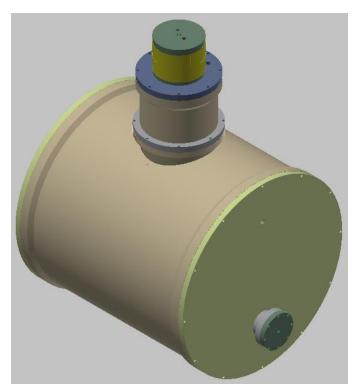
SQUID Electronics

DC-power and acquisition

High-pass filter: 200 Hz Low-pass filter: 2 kHz Sensitivity: 1.0 nT/V and 0.01 nT/V with Gain = 100 LSB: 15×10^{-15} T and 0.15 × 10^{-15} T with Gain = 100

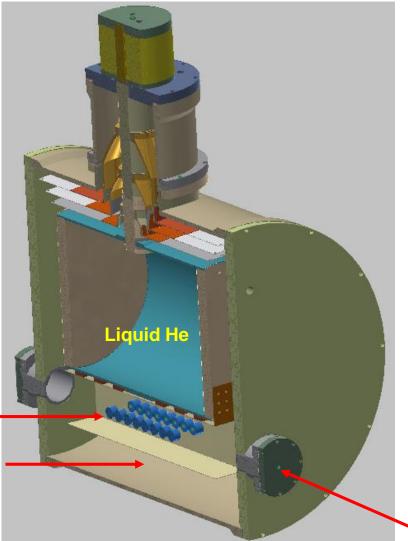
G2 Beam Position Monitoring SQUID system

- Number of SQUIDs: 2 × 8
- Pickup coil: 2-turn wire-wound magnetometer, Ø 20 mm
- SQUIDs-in-Vacuum
- **Superconductive Shielding**
- Superconducting Imaging Surface \rightarrow the First-Order Gradiometers
- **Cylindrical Dewar**
- System Field Resolution: 0.5 fT/√Hz @1 kHz



Superconductor imaging surface magnetometry

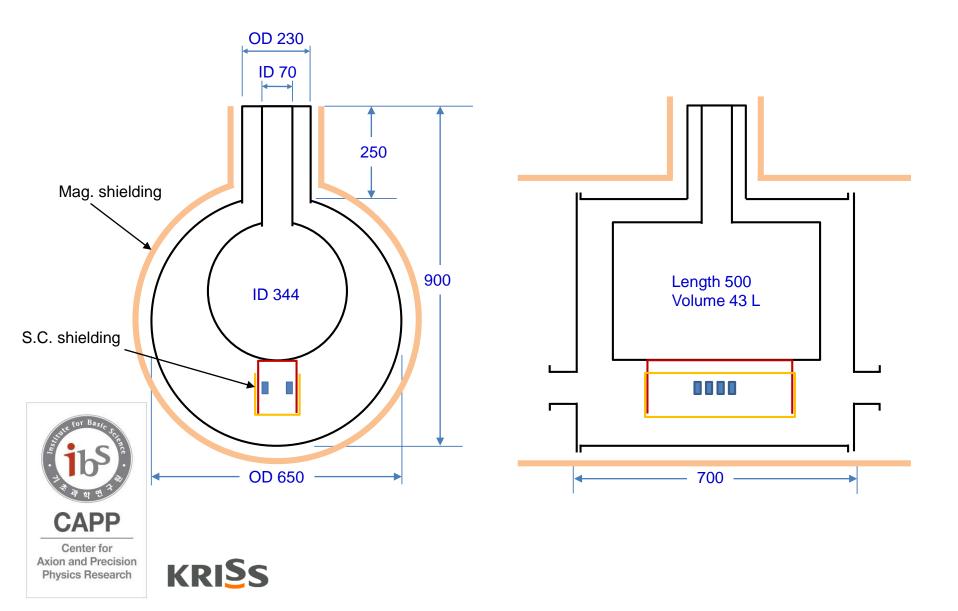
David B. van Hulsteyn, Albert G. Petschek, Edward R. Flynn, and William C. Overton, Jr. Los Alamos National Laboratory, Physics Division, Los Alamos, New Mexico 87544

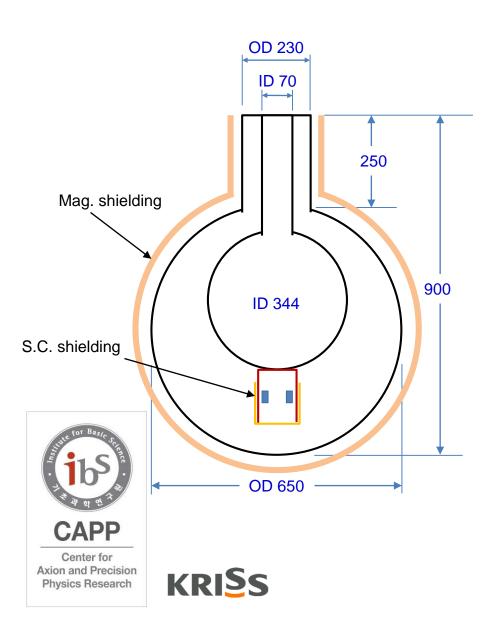

(Received 14 November 1994; accepted for publication 24 March 1995)-

G2 Beam Position Monitoring: Concept

SQUID magnetometers

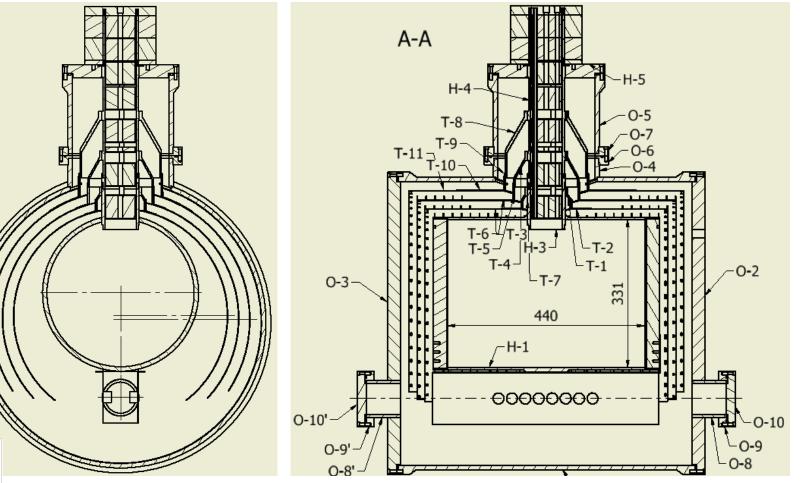
Vacuum




KRISS

To p-beam line

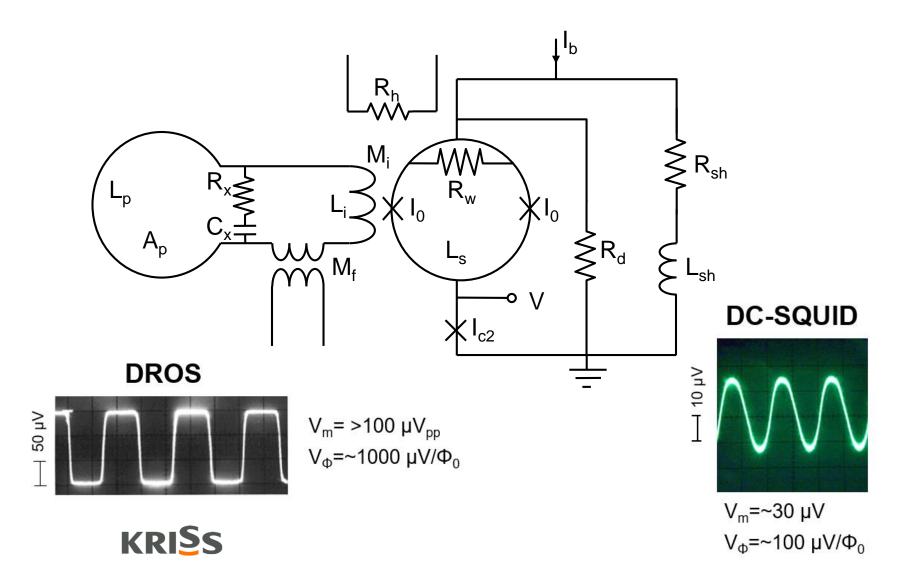
Cylindrical Cryostat: Dimensions


Cylindrical Cryostat: Re-Liquefier

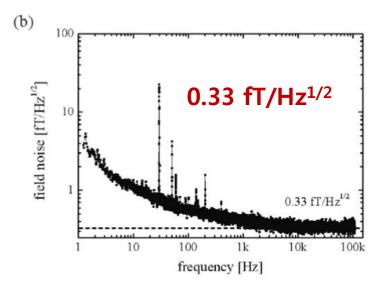
Helium Reliquefiers · Powered by a Cryomech Pulse Tube Cryocooler, designed with high reliability with long mean times between maintenance In operation all over the world ٠ Shipped assembled for ease of . installation by on-site technician

- Operate 24 hours a day, 7 days a week reliably, automatically and safely
- Customized design for each
 application

Cylindrical Cryostat: Engineering Drawings


Cylindrical Cryostat: Parts

Center for Axion and Precision Physics Research



Double Relaxation Oscillation SQUIDs at KRISS

New Generation State-of-the-art SQUIDs

Device name	ML2A	ML2B	ML4.5	ML7	ML12
Number of loops	8	4	8	10	12
Chip size (mm^2)	2.5×2.5	2.5×2.5	5.0×5.0	7.5×7.5	12.5×12.5
Outer pickup coil dimension (mm)	2.0	2.0	4.5	7.0	12.2
Transfer function, $1/A_{\text{eff}}$, (nT/Φ_0) :					
Measured	5.55	3.03	1.09	0.57	0.25
Calculated	5.54	2.48	1.10	0.56	0.26
Junction size $(\mu m \times \mu m)$	0.8 imes 0.8	0.8 imes 0.8	0.8 imes 0.8	0.8 imes 0.8	0.6×0.6
Junction critical current, I_c , (μA)	9.3	11.9	8.0	7.5	2.3
Damping resistance, R_n , (Ω)	19.8	16.0	19.8	18.6	47.8
Calculated SQUID inductance L (pH)	130	375	270	325	300
$\beta_{\rm L}$	1.19	4.30	2.10	2.34	0.67
$\beta_{\rm C}$	0.44	0.37	0.38	0.31	0.36
Voltage swing (μV_{pp}) :					
Measured	170	145	135	110	100
Calculated	175	150	135	115	110
SQUID noise					
Intrinsic flux noise ($\mu \Phi_0 \text{ Hz}^{-1/2}$) :					
Measured	0.63	1.50	1.10	1.23	1.34
Calculated	0.42	1.21	0.82	1.00	0.75
Measured intrinsic field noise (fT $Hz^{-1/2}$)	3.5	4.5	1.2	0.7	0.33
Energy resolution:					
Measured (h)	9.7	19.5	14.5	15.1	19.3
Calculated (h)	4.4	12.7	8.0	10.0	5.8

Figure 2. Typical noise spectra of two multi-loop SQUID magnetometers; (a) magnetometer of type ML7 with 0.8 μ m × 0.8 μ m Josephson junctions and (b) of type ML12 with 0.6 μ m × 0.6 μ m Josephson junctions.

Pick-up Loop: $12 \times 12 \text{ mm}^2$ Noise = 0.33 fT/Hz^{1/2}

Pick-up Loop: 24 × 48 mm² Noise = 0.11 fT/Hz^{1/2}

IPHT, Jena, Germany (2011) Supercond. Sci. Technol. 24 (2011) 065009(5pp) doi:10.1088/0953-2048/24/6/065009

SUMMARY

- * The First generation (G1) of BMP system: tested at KRISS and moved to CAPP for further tests and research.
- * The Second generation (G2) of BMP system: simulated, designed, key components manufactured; it will be assembled and tested in 2017.
- ♦ Field Resolution: current G1 system \rightarrow 1.5 fT/√Hz @1 kHz
- ♦ Field Resolution: under construction G2 system \rightarrow 0.5 fT/√Hz @1 kHz
- ♦ Field Resolution: new generation SQUIDs \rightarrow 0.15 fT/√Hz @1 kHz

TANKS FOR YOUR ATTENTION !

