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TUTl state of the art

Passive SF > 6 Millions @ 1 mHz
(without using ext. compensation)
‘Gradient’ <100 pT/min 1 m3
Abs(B) <100 pT

Stability <5 fT in 1000 s

Field homogeneity maps [pT]:
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UM Magnetometer stability is not
trivial: e.g. SQUID and He+Xe cell

lllustration: simultaneous precession of
129X e and 3He amplitude in cylindrical cell
with 5 kV/cm applied (preliminary data for
illustration only!)
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before: 2.38e-05 Hz at 60.0 s
after; 4.28e-09 Hz at 3040.0 s
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Many new systematic effects observed at
this level of precision: EDM experiments are

difficult...
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TUTl Side note: Progress with SQUIDs

SQUID-
electronics
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FIG. 1. Left: the schematic setup of LINOD2 in gradiometer configuration.
Right: a view of one of the heat shields made from Al,O; strips together
with the copper mesh heat shield at the dewar reservoir. The outer shell has

been removed.
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FIG. 2. Measured magnetic flux density noise Sy / for the two setups with

45 mm diameter pick-up coils: Magnetometer (s011d green curve) and gradl-
ometer (solid blue curve). The calculated intrinsic SQUID noise levels S

are given by the dotted curves. For the gradiometer, the noise is referred to
the bottom pick-up loop, and the gradient noise is shown on the right.

PTB BERLIN: Appl. Phys. Lett. 110, 072603 (2017)
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TUTI Improved magnetic equilibration 7

Ultra low magnetic fields and gradients: ,L-shaped’ coils, 10 x improved speed to
state of the art, also better result
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Remanent field (relatively) independent of shielding factor!
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TI.ITI Time

-dependent simulations of
hysteresis curves

Current status: Quantitatively correct time-dependent modeling of real geometries

Z. Sun et al., J. Appl. Phys. 119, 193902 (2016)
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Simulation Experiment

Joint activity of FM, TUM, PTB, HIT,
IBS
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TLTI ... Implications (examples)

Residual fields in shielded rooms can be lowered and gradients minimized;
Static and time-dependent simulations give quite different results:

B inside the shield before and after equilibration

8,00E-09 | 5
= |

7,00E-09 Aagnetostatic 002 e

6,00E-09 \\ s....'u% 0- ]

5,00E-09 > | [

4,00E-0% -0.02 ¥ -J

3,00E-09 —_— _— 0.02 | %02

’ 0 2 O 0

2,00E-09 Time-dependent 0.020.42

1,00€-09 simulation

0,00E+00 l . , , . .

-0,03 -0,02 -0,01 0 0,01 0,02 003 | 1his line

line through the center of the shield (m)

(External field: 1 uT)

Z. Sun (HIT), in collaboration with TUM
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A magnetic shield with new
T design

- New wall design

- 2 mm thick, 1 shell

- L-shaped, (NEW) distributed
equilibration coils

- Installed temporarily inside outer TUM
EDM shield for characterization

P. Fierlinger — pEDM meeting CERN March 13th 2017



New: distributed
LLL equilibration coils

- ldea: keep “mistakes’ close to material (similar to pEDM octagon prototype)

- Used in several new experiments and installations (e.g. at Harbin Inst. of Techn.,
also e.g. in atomic fountains, at ISS, and for a new PRIMORDIAL MAGNETIC
FIELD experiment

- Bestresults: <25 pT in 1 m3 measured at TUM with PTB and HIT (8/2016)

Figures: Z. Sun P. Fierlinger — pEDM meeting CERN March 13th 2017



typical map
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A simple trick for
L1l residual field modeling

Applying DC bias-currents in equilibration coils produces similar field
pattern as imperfect equilibration:

Example 1: door overlap E)g?mple 2: arrangement of degaussing
coils

(a) (b)
(a) (b)
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TUTl  Side note: MSR creator script

(free and open source)

Magnetic shields contain a logical .
structure. —- - e
Why design this manually? | —

P - -

Inputs: o I =
Number of Permalloy shields, = ——
Dimensions and holes, - :“::'.m |
RF shield position, — e
Substrates for Permalloy etc. :”:ww 55?55%3?‘:53 S

Output: ————

Full Solidworks 3D model of shields ot
with all parts in details (screw holes,
tolerances, materials)




TLTI Field and gradient drifts

SQUID measurements inside cuboid magnetic shields
(inner cylinder NOT used: factor 6 lowered performance in plots!)

Allan std. dev. of field drlift | Allan std. dev. of gradient drift
100 77 _ 1000
50 i _xT YTz
_ = 500;
= =
n 10 — 200 /’\
5 S
m 100 :
o
,/ 50r
10 100 1000 10 100 1000
7 sl 7 [s]
Example: 108 ecm in nEDM ~ few fT goal for Example: double cell nEDM: 10 cm typical
unmeasured drifts CM-separation: < 10 fT drift

(Measurement issue: drift-noise compromise!)
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TUT Noise and drifts

Comparison of SQUID measurements inside magnetic shields -
superconducting shield and mu-metal comparison:
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equency 1 Hz ... Everything placed inside shield is
: a potential problem!
TUM shield P P

(Measured by PTB, baseline limited by meas. instruments)
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TUm Problems to keep in mind
also for pEDM

SQUID measurements of Sussex- EDM

Thermally induced currents in metals:
electrodes @ PTB Berlin

MUCH more critical
than Johnson noise

Hand is removed /')

weo~

H
c Gloved hand touches
S 1 electrode

> 200 pTin 3 cm demagnetized: 20 pT

distance: as used in pp in 3 cm distance

Sussex-EDM (Larger than nEDM Time (few 100 S)
experiment error budget!)
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TLTI Next generation...

What is *really* happening in next-generation experiments?

104F —

Eg 2 ]

- Tsallis-distributions of particle spins ¢ .

C i 7

- Distributions can also have higher 3 10%: N

moments: possible identification of g ]

origin of false effects 3 Lo | .

£ 3 ° Gaussian, ¢=1.0 L 3

- Could also show up elsewhere? @ | o<x/ | 7" o) \Me, o

L .o AQ mo . A™g 9

- Skewness -> would lead to wrong E.::,«'A‘ come OBJoz=12T g—1.3 a
estimation of a frequency shift? 1005 —5 0 5 i

Normalized precession angle ¢y

M. Bales et al., Eur. Phys. Lett. 2016
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TLTI Next generation...

Build-up of non-gaussian shape
over time:

¢ Ey =14 v 0B/oz=1" Different for different polarized species
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Summary

Improvements of techniques compared to EDM shields in 2016
Very small residual fields are possible with fast equilibration
Johnson noise of MSRs ~ 100 aT/rt(Hz)

Thermal currents in metallic parts will likely dominate (e.g. in
electrodes!)

High (passive) stability possible
Gradient requirements for EDM measurements realistic

‘Yet unknown’ systematics may require even better magnetic
shielding...
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