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Is it possible to describe a spin motion without a
calculation of beam dynamics?

Probably not, but some steps ahead can be made

First of all, a standard description of spin motion
relative to detectors can be used, i.e., an equation of
spin motion in the cylindrical or Frenet-Serret

coordinates can be applied.
Equation of spin motion in the Cartesian coordinates:

d
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G=(9g—2)/2, n=2mecd/(es), and d is the EDM.
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Equation of spin motion in the cylindrical coordinates:

Qe =~ {GB il B(3 - B)
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Equation of spin motion in the Frenet-Serret coordinates:
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We can derive the equation of spin motion in storage
rings in the cylindrical coordinate system with allowance
for field misalignments and imperfections and also for
flelds which are orthogonal to main ones. Besides this,
we can consider spin motion in periodical external fields
and can solve the spin motion equations.



The (pseudo)-vector of angular velocity (i.e., stable spin axis)
becomes tilted. The instantaneous plane of particle motion does
not coincide with the horizontal plane, and the instantaneous
plane of rotation of vector N=p/p is not horizontal. The angle ®
between two positions of the rotating vector N in the tilted plane
IS not equal to the angle ¢ between two corresponding
horizontal projections. Therefore, the instantaneous angular
velocity of particle motion is changed. The infinitesimal angle
of particle rotation in the xy plane, d¢, is given by
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As arule, 0is arather small correction. These equations are

exact.
e ( (N X E)?)
—| B. — - |.
ym p
The instantaneous angular velocity of spin rotation in the

horizontal plane,i, is characterized by the change of angle
determining the spin orientation in this plane.
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As arule, O is arather small correction. These equations are
exact.
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Abstract

A general theoretical description of a magnetic resonance is presented. This deseription is nec-
essary for a detailed analysis of spin dynamics in electric-dipole-moment experiments in storage
rings. General formulas describing a behavior of all components of the polarization vector at
the magnetic resonance are obtained for an arbitrary mmitial polarization. These formulas are ex-
act on condition that the nonresonance rotating field i1s neglected. The spin dynamics 1s also
calculated at frequencies far from resonance with allowance for both rotating fields. A general
quantum-mechanical analysis of the spin evolution at the magnetic resonance 1s fulfilled and the

full agreement between the classical and quantum-mechanical approaches 1s shown. Quasimagnetic
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Constant vertical magnetic field and oscillating
horizontal magnetic field

B,=Be,  B,=Bcos(at+y).

Spin-dependent part of the classical Hamiltonian is
given by

H=wo (+2€Ceos(wt+y), wo=—2FVp,
NN
¢ = — B.
o

For particles, gy pn should be replaced with egh/(2m)

L]
&

where g = 2mcu/(es).
The amplitudes of the rotating magnetic fields are

equal to B/2.
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Let us direct € along the z axis: ¢ = Ce,.
This direction 1s not 1mportant in the considered case.

In the rotating frame, the total angular velocity of the
spin rotation Is equal to

ﬂZLdD—Ld+(E: Q-:\/(LLJ{]_LLJ)2+@2.

We can derive exact formulas for spin dynamics in the
rotating frame and then pass to the lab one.

When the initial spin direction is defined by the
spherical angles 0 and v,

P,(0) =sinfcosv, PF,0)=sinfsmv, P,(0)=cosb,

the final result is given by

13
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P.(t) = cos Qt sin @ cos (wt + ) + 0 (1 — cosQt)sinf cos (¥ — x) cos (wt + x)

Wo — W, L .
. sin 2t sin € sin (wt + 1)

+% lwﬂé “ (1 —cos Qt) cos (wt + x) + sin Qt sin (wt + X)] cos 6,
P,(t) = o sin 2t sin @ cos (wt + 1) + cos Qf sin # sin (wt + 1)
+S—z (1 — cosQt)sin b cos (¢ — x) sin (wt + x)
+§ [UJBS_; “ (1 — cos2t) sin (wt + x) — sin 2t cos (wt + 1()] cos @,
P.(1) = o 5;}{5 (1 — cos Q) sin f cos (1) — x) + gsm ()t sin #sin (¥ — \)
+ [1 — g—z (1 —cos Qt)] cos 0.

Both the vertical and horizontal initial polarizations
are useful
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At frequencies far from resonance, effects of two magnetic
flelds rotating in opposite directions are comparable
¢

P.(t) = sinf cos (wot + V) + { [CDS (wt + x) — cos (wot — 1)]

Wp + w

_|_

Wp — W

[r:::ns (wt + ) — cos (wot + 1)} } cos 6,

P,(t) = sin#sin (wot + ¥) + { [5111 (wt + x) + sin (wot — X)]

Wo + W

¢ . :
+ [5111 (wt + x) — sin (wot + 1)] } cos 6,
Wp — W
¢ | .
P.(t) = cosf + ( {ms (¥ + x) — cos [(wo + w)t + 1 + 1]}
Wo + W
¢ .
+ {CDS (¥ — x) —cos|(wp —w)t+ v — j{]} sin 6.
Wo — W



We have also given the guantum-mechanical
description of the magnetic resonance

The transformation (22) brings the equation for the matrix Hamiltonian to the form

dC(#)
,dC() _

1 wp — W & exp [i(wt + \)]
dt 2

C'(t). (24)
® exp [—i(wt + \)] —wo + w

The terms in Eq. (24) oscillating with the angular frequency 2w can be neglected and

this equation takes the form

Aty 1 [ wo—w @
;

——— C'(1). 25
il R [0 (25)
The solution of Eq. (25) is given by
( og;w sin S?;) L (0) — I%biﬂ %(’ (0),
¢ Ot wo—w . O (26)
= —igsin ?C (0) + (C'Ubg + 1 g Sin 2) C'_(0),

where € is defined by Eq. (3).
If we use Eq. (26) for a derivation of P/ (¢) in terms of P/(0) (i = x,y, z). we come to Eq.

(7). This fact clearly demonstrates the full agreement of results obtained by the classical



Resonance EDM experiments
with a rf electric-field flipper
and a rf Wien filter
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A distinguishing feature of storage ring EDM
experiments is a discontinuity of perturbing fields

I<<C

| is the rf flipper/filter length,
C is the circumference

rf flipper/filter

Since lengths of the flipper and the filter are small as
compared with the ring circumference, an
approximation of the noncontinuous perturbing field by
the delta function is permissible. An expansion of the
delta function into the Fourier series is defined by

18
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Z o(P — 27mn) + st (nP) er Z cos (n®),

n=—moo n=—0o

where ® = w,.t 1s the phase.

sin (W't + y) Z 0(P —2mn) = Z sin [(w' 4 nw, )t 4 x| = E sin [(n+ v)® + y/,
=y E
cos (w't + y) Z O(P —2mn) = 5 Z cos [(w' + nw, )t + x| = Z cos |[(n+v)®+ y/,

where v = ' /w,. is the modulation tune.
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More adequately, the electric fields of the flipper and the filter
can be defined as oscillating fields on the finite length |:

Ey 1 e —W—I—I—Q?m ﬂ—E—I—Q?m
C C
£(2) = ol 7l ]
0 if & __E + 27n, el - Q?TTE-
HZO,:I:LZZQ,*.*
In this case, an expansion into the Fourier series has the form
— [ I . mnl
E(P)=Ey ; a, cos (n®), ag= ol Qp = —sil——.

Angular velocity of the spin rotation is given by

Q) = g, Z an cos [(W' + nw, )t + x| = ~ 5 g, Z ap cos [(n+v)®+ x|.

Qm
N=—0o0 n=—0o
20
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Important distinguishing features of storage ring EDM
experiments are also a simultaneous influence of external
fields on the electric and magnetic dipole moments and the

existence of a resonance effect even when the stimulating
torque acting on the EDM is equal to zero.

For a more precise Fourier expansion, one can use real
parameters of the resonator fields.

21
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1. 'Resonance’” stimulated by the oscillating vertical

magnetic field in the

storage ring with the main

magnetic field B,

B(®) cos (W't + x) = B

°) Z (y, €08 [(wW' + nw,)t + x|

n=—

The angular velocity of the spin rotation in the cylindrical

coordinates is given by (B=

3€y)

Olevl) — Wo [1 + b, cos (wt + }{)

en )
e, QmﬁBD 11+ b, cos (wt + x)] e,

Wp = —EBD
1T
In the considered case,
(0sc)
b, =b™ =1b, =b" = Do
r

= B{] ) 22
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Evidently, the constant and oscillating parts of the vector Q) are collinear.
This vector forms the small angle with the 2 axis

, np
9 — sind — B.o_
S Qmwnﬁ "= 5a

Any resonance effect does not exist:

Qv — o, 11+ b, cos (wt + x)] ey, ey = e, +ve,.

O — 00 L ®
/ \

constant part oscillating part

QY =ge,, QY =ab,cos(at+y)e

23
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Figure 1. Magnetic-field flipper”.
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2. Resonance stimulated by the oscillating radial electric
field in the storage ring with the main magnetic field B,

(1. ED S{I E[] 1
E, = Eqe,. b, =bl®) = 2~ b, =0b¢) = " — QG
! 0€r; ' 5By’ : G By (’}’2 -1 )

It 1s very convenlent to switch to the new axes, e, = e, —ve,, e; and ey

QD — o [1 4 b, cos (wt + )] ey + wod? (b, — b,) cos (wt + x)ec.

E)(E} B b[ej _ I'_In_ED ' G + 1 _ Egﬂ.nE[] i
' ’ BBy  Gv? 2mBy*wo
The horizontal spin polarization at the initial vertical spin
direction is given by

P,(t) = Etsin (wt + X)),

P,(t) = — ¢t cos (wt + x)
1 en G+1
¢ 2ILLJ‘[J ( e z ) Am Gf}i" a 0 25
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Figure 2. Electric-field
flipper.

stable spin axis

Qldm QO « For the E-field flipper,

QW) — 00 L oW
Q% =pe,,
QY = @,b® cos(wt + y)e,

+ap (b b )cos(at+ y)e,.
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3. Resonance stimulated by the rf Wien filter in the storage

ring with the main magnetic field B,
There is not any oscillating force acting on a particle:
B{*® + BE, =0.
Oscillating fields should be synchronized:

E=E,cos(at+y), B =By cos(at+ y).

The angular velocity of the spin rotation takes the form

Q) = g 1+ (b€ + 5™ cos (wt + X)| e: +wove,

There is not aresonance field acting on the EDM!

However, €g and €, are not collinear

27
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To determine the resonance effect, it iIs convenient
to pass to the axes €g and €.

e, =¢e,+35e, e, =e —9,.

g
In this case,

Q) — o [1 4 cos (wt + x)] ey — wodd cos (wt + x)e,

where

{I.HE[] G + 1

5 — ple) Lpm) _ _ple) 4 ple) _ .
: IBB[} f.l_‘;r\""]r“2

Z < r

The resonance EDM effect is provided by the
oscillating torque acting on the MDM

28
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Figure 3. rf
Wien filter.

stable spin axis
A
Qudn Qv € For the rf Wien filter,

QW) — 00 L oW

(0) _
Q" =w,e,,

QY = -, (b —b{ )cos(at + y)e,

1)
Kot i +a)019(bfe) — bz(e))cos(a)t + )€,
Rt [
Il’ E Q(l)

(0)
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It can be checked that

he) _ anky G+1 eqga,, Ey

' : BB | G2 21?13’}3”

If b,<<1, the general equations obtained for the magnetic
resonance can be used. In this case,

1 en G+1
¢ = —wed (0¥ — bl9)) = . —a, Ep.
gt (b7 —b7) =~ G nEe
When the initial spin direction is horizontal,
. en G+1 |
P.(t) = ¢tsin (v — y) = . G a, Eot sin (1 — ).

This equation agrees with previous results.
sin(w-x)=1 in the experiment planned 30
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The more precise derivation of the beam polarization
along the eg4 axis during one spin revolution:

T/2
APy = —wydd / cos (wot + 0 sin wyt) cos wot dt,
J-T/2
We can apply properties of the Bessel functions (n is integer):

1 m
Ja(2) = — /[; cos (nx — zsinx)dz, J_n(2)=(=1)"T,(2).

TI_ L

We obtain the following exact formula:
APy = 19[Jo(|8]) + Jo(|6])]6.
When 8<<1, J,(8)+J,(d)=1- d%/8.

As aresult, the average build-up of the vertical spin
polarization is given by
w.;.ﬁ&

P:(t) = ——5—[Jo(|9]) + J2(|0])]t =

en G+1
dm G2

anEo|Jo([0]) + J2(]0])]2.



Systematical errors in an
experiment with the rf Wien
filter
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The vertical electric field and the radial and longitudinal
magnetic fields may create a resonance effect imitating the
presence of the EDM. This effect can take place due to

misalignments and imperfections of the oscillating

fields in the rf Wien filter. Similarly directed constant
Imperfection fields can also exist in the storage ring.
However, they do not create any resonance effect.

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 16, 114001 (2013)
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rf Wien filter in an electric dipole moment storage ring: The ‘*partially frozen spin” effect

William M. Morse," Yuri E Orlov,” and Yannis K. Semertzidis'*

'Brookhaven National Laboratory, Upton, New York 11973-5000, USA
2Comell University, Ithaca, New York 14853, USA
(Received 15 April 2013; published 27 November 2013)

An rf Wien filter (WF) can be used in a storage ring to measure a particle’s electric dipole moment
(EDM). If the WF frequency equals the spin precession frequency without WF, and the oscillating WF
fields are chosen so that the corresponding transverse Lorentz force equals zero, then a large source of

systematic errors is canceled but the EDM signal is not. This effect, discovered by simulation, can be
called the “partially frozen spin” effect.
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To decrease systematic errors, it is necessary to avoid any
dependence of the particle motion on the fields of the rf Wien
filter. This means canceling the Lorenz force in both radial
and vertical directions. We obtain the formula

(E,+p<B) =0,

Z

In general,
By™ =B +BY + B =B Ve +B e, +B™e,.

For the vertical electric and the radial magnetic fields, we
obtain the formula

e G+1
Qp=——- a, B, E=— an By,

Nhis defines the corresponding systematic error.

In agreement with Morse, Orlov, and Semertzidis work

e (G+1




The longitudinal magnetic field causes the resonance effect
defined by
e G+1

e G+1 - .
T a, B ¢ = —- an*l}sé@}.
m vy 2m ¥

What is a difference between the two systematical errors?

) =—

The longitudinal magnetic field turns the spin around the
longitudinal direction while the EDM effect consists in the
spin rotation around the radial direction. As a result, phases
of rotating horizontal spin components appearing due to the
longitudinal magnetic field and the EDM effect differ on 11/2.
< %(@
%(r)
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Summary

m General description of spin dynamics at the magnetic
resonance has been carried out. Formulas have been
obtained for all polarization components, an arbitrary initial
beam polarization, an arbitrary phase of a perturbing field,
and also for the spin evolution at frequencies far from
resonance

m The results obtained can be effectively used for a
guasimagnetic resonance in storage ring EDM experiments
with allowance for their distinguishing features

m Spin dynamics in resonance EDM experiments with a rf
electric-field flipper and a rf Wien filter has been theoretically
described in detalil

m Systematical errors in resonance EDM experiments with

the rf Wien filter have been calculated
36
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