Analytical models for fringing fields of electrostatic deflectors

work done within the JEDI collaboration

```
JEAN-MARIE DE CONTO, YOLANDA GÓMEZ, JULIEN MICHAUD
EDM KICK-OFF MEETING - CERN - MARCH 2017
```

Aknowledgments to Yann Dutheil for his kind support for Bmad

Overview

Main questions:

What is the contribution of fringing fields to spin decoherence (ex: sextupolar component)?
Why analytical models?

- Easier and faster than finite elements for implementation in beam tracking code
- Gives transfert functions (mapping) for trajectories and spin
- Suited for long term behaviour and analytical model of (eg) one turn mapping and machine design (correction by sextuple for instance)

What is presented

- 2D realistic models based on conformal transforms for cylindrical deflectors
- Trajectory of the reference particle (deviates from a circle)
- Transfer functions (non-linear mapping) for trajectories and spin

Future: finalization of this preliminary work (under way) and implementation in Bmad (under way)

Question: how to get a realistic and accurate model for fields and fringing fields including boudary conditions ?

The motivation for analytical calculation is to get accurate models for code implementation. Finite elements are
required to check/validate the models and 2D vs 3D

Reminder: Electrostatics in the complex plane

For $z=x+i \cdot y$ the conformal transform $Z=F(z)=X+i \cdot Y=\frac{1}{\pi} \cdot\left[1+z+e^{z}\right]$
transforms the infinite planar capacity $[-\infty,+\infty] \times[-\pi,+\pi]$ to an half-infinite planar with gap equal to 2 and ending in $\mathrm{X}=0$.

Potential:

$$
V(Z)=V(z)=y
$$

Reciprocal:

$$
z=\pi Z-1-W\left(e^{\pi Z-1}\right) \text { with } W=\text { Lambert function }
$$

More generally, any CT transforms a set of orthogonal lines to another one. The lines describe a potential/field lines set

$$
\begin{gathered}
\underline{V}=V_{\text {scalar }}+i \cdot \phi_{E} \\
-\frac{d \underline{V}}{d z}=\underline{E}=E_{x}-i \cdot E_{y}
\end{gathered}
$$

In our example:

$$
\underline{V}=i \cdot z \rightarrow-\underline{E}=\frac{d z}{d Z}=\frac{1}{\frac{d Z}{d z}}=\frac{2 \pi i}{1+e^{z}}=\frac{\pi i}{1+W\left[e^{\pi Z-1}\right]}
$$

Step 1: A more realistic profile: a double transform

$$
\left\{-\frac{\pi}{2} \leq \operatorname{Im}(z) \leq \frac{\pi}{2}\right\}: T: z \mapsto Z_{1}=\left[1+z+e^{z}\right] \mapsto Z_{2}=\frac{1}{\pi} \cdot\left[1.376+Z_{1}+e^{Z_{1}}\right]
$$

1.376 is only a matter of longitudinal origin

A way to do analytical calculation on a real -Aachen- profile

The (hard) reality: the real deflector

Step 2: including the reality AND square boundary conditions

Questions:

- How to get this picture from the infinite paralel deflector?
-What is the green line (average of the zero equipentials)?

Anwers:

1- A new (sorry) conformal transform -Joukovski-

2- A boundary condition (green) easy to compute

We use the Joukovski transform (infact for any angles)

$$
g_{1}(z)=\int_{0}^{z} \frac{d t}{t^{1 / 2} \cdot[t-1]^{1 / 4} \cdot[t+1]^{1 / 4}}=\frac{5}{2} \cdot e^{-\frac{i \cdot \pi}{5}} \cdot t^{2 / 5} \cdot H_{\frac{11}{5^{\prime} 5^{\prime} \cdot 5}}\left(t^{2}\right)
$$

transforms the line $(y=0)$ into the external contour
The inside (half-plane $y>0$) is the image of the $\mathrm{y} \pm \frac{\pi}{2}$ (infinite parallel deflector) via

$$
g_{2}(z)=i \cdot e^{z} \text { (previous slide) }
$$

Finaly: $G(z)=0.2+\frac{\pi}{2}-g_{2} \circ g_{1}(z)=0.2+\frac{\pi}{2}-\frac{5}{2} \cdot e^{\frac{2}{5} z} \cdot H_{\frac{1}{5} 15^{\prime}, \frac{6}{5}}\left(e^{2 z}\right)$ is the solution

G is not so complicated

- The reciprocal of G must be calculated
- G is a very regular function
- G is universal (to be inverted one time only!)

In gap units, at second order only:

$$
G(x) \sim \exp \left[0.89+0.3417 x-0.0259 x^{2}\right]=\exp (P(x))
$$

Bottom picture: relative error on $\mathrm{G}(\mathrm{x})$ for x real (decimal logarithm)

Used to check the coherence of the model, but has to be improved.The use of a second order polynomial was only to get a very easy reciprocal for G

2) The boundary $V=0$

-The average zero-equipotential (for « square » boundary conditions), is close to a circle -The circle is the image of a vertical segment
oThe original configuration is not an infinite parallel capacitor but a semi-infinite capacitor with a vertical segment with $\mathrm{V}=0$

Last ingredient: the potential in a half box

A well known result : $V(x, y)=\int_{-\infty}^{+\infty} \frac{\operatorname{sh}(\omega y) \cdot \sin (\omega x)}{\operatorname{sh}(\omega) \cdot \omega} \cdot d \omega$ but unuseful
We found the following nice results (a little bit tricky but useful)

$$
\begin{gathered}
V(x, y)=\int_{-\infty}^{+\infty} \frac{\operatorname{sh}(\omega y) \cdot \sin (\omega x)}{\omega \cdot \operatorname{sh}(\omega)} \cdot d \omega=\arctan \left[\frac{\operatorname{sh}(\pi x) \cdot \sin (\pi y)}{1+\operatorname{ch}(\pi x) \cdot \cos (\pi y)}\right] \\
\underline{E}(z)=i \cdot \pi \cdot \operatorname{th}\left[\frac{\pi \cdot z}{2}\right] \rightarrow \underline{V}(z)=i \cdot \ln \left[\operatorname{th}^{2}\left(\frac{\pi \cdot z}{2}\right)-1\right]+\pi \cdot \operatorname{sign}(\operatorname{Im}(z)) \quad \text { for } \operatorname{Re}(z) \geq 0 \\
\underline{V}(z)=i \cdot \ln \left[\operatorname{th}^{2}\left(\frac{\pi \cdot z}{2}\right)-1\right]+\pi \cdot \operatorname{sign}(\operatorname{Im}(z)) \quad \text { for } \operatorname{Re}(z) \geq 0
\end{gathered}
$$

A lot of transformations

Here

$\rho_{0}=10$ and $\mathrm{G}=1$ for illustrati

$$
G(z)=0.2+\frac{\pi}{2}-\frac{5}{2} \cdot e^{\frac{2}{5} z} \cdot H_{\frac{1}{5}, \frac{1}{5} \cdot 5}\left(e^{2 z}\right) \mapsto Z_{1}=\left[1+G(z)+e^{G(z)}\right] \mapsto Z_{2}=\frac{1}{\pi} \cdot\left[1.376+Z_{1}+e^{Z_{1}}\right] \mapsto Z_{3}=\rho_{0} \cdot e^{i G \cdot Z_{3} / \rho_{0}}
$$

To be compiled to get a ready-to-use library for curved or straight deflectors

Comparison « naive » deflector / our model/ ANSYS for our model (Log10(Ey) on axis)

Left: parallel capacitor (semi-infinite)
Right: ANSYS (blue line, Julien) versus analytical model (red dots)
boundary conditions at 3 gaps

Reference particle trajectory

- Hard edge model not valid

- Trajectory up to zero equipotential has to be known
- Transverse displacement (0.4 mm ?)
- Angle (3 mrad?)
- Calculation done by hamiltonian
- Analytical calculation
- Non-relativistic model (or γ constant)
- Proof of principle
- To make a first check
- To get the ordrers of magnitude

Trajectory of the reference particle with respect to the circle $\rho=\rho_{0}$

- Numerical integration of the-independantequations of motion for checking

Equation of motion with respect to the nominal radius of curvature

From the hamiltonian (for $\gamma=1$, can be done for any γ)

$$
\begin{gathered}
x^{\prime \prime}=\frac{\varepsilon-1}{\rho_{0}}-\frac{\varepsilon+1}{\rho_{0}^{2}} \cdot x \quad \varepsilon=\frac{E}{E_{\text {nominal }}} \\
\frac{1}{\Omega} \cdot \tilde{x}^{\prime \prime}+w(\tilde{s}) \cdot \tilde{x}=\frac{-2}{\rho_{0}} \cdot \frac{\left(s_{\max }-s_{\min }\right)^{2}}{4 \Omega}
\end{gathered}
$$

P_{i} computed by recurrence relations

$$
\tilde{x}=\sum_{i=0}^{M} \alpha_{i} \cdot P_{i}(\tilde{s})
$$ All integral computed by Legendre quadrature

$$
\left[\begin{array}{ll}
C(-1) & S(-1) \\
C^{\prime}(-1) & S^{\prime}(-1)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Look for polynomials C and S such as
(solutions of the equation without rht)

$$
x=\rho_{0} \cdot(1-C(\tilde{s}))+\left(\frac{-2}{\rho_{0}} \cdot \frac{\left(s_{\max }-s_{\min }\right)^{2}}{4 \Omega}\left[S(\tilde{s}) \cdot \int_{-1}^{\tilde{s}} C(t) d t-C(\tilde{s}) \cdot \int_{-1}^{\tilde{s}} S(t) d t\right]\right.
$$

Example, for a 40m radius deflector: comparison with Rkutta integration of motion

- The position deviates by 0.3 mm (not so much)
- The angle deviates by 4 mrad (not negligible)

Radial position (meters)

absolute error (meters), obtained via RK

Second order transfer function in a hard-edge deflector

$$
\mathcal{H}=-\left(1+\frac{x}{\rho_{0}}\right) \cdot \sqrt{\frac{\gamma^{2}-1}{\gamma_{0}^{2} \cdot \beta_{0}^{2}}-\left(\bar{p}_{x}^{2}+\bar{p}_{y}^{2}\right)}=\mathcal{H}_{\text {lin }}+\widetilde{\mathscr{H}} \quad \gamma=\gamma_{0} \cdot\left(1-\frac{V}{E_{0}}+\frac{\Delta E}{E_{0}}\right)
$$

$$
\begin{gathered}
q_{0}=q_{0}\left[K_{1}, K_{2}, s\right]=x_{0} \cos (\omega s)+\frac{x_{0}^{\prime}{ }_{0} \sin (\omega s)}{\omega} \\
p_{0}=p_{0}\left[K_{1}, K_{2}, s\right]=-x_{0} \omega \cdot \sin (\omega s)+x^{\prime}{ }_{0} \cos (\omega s)
\end{gathered}
$$

Perturbations - variation of constants

$$
q=q_{0}\left[K_{1}(s), K_{2}(s), s\right]=K_{1} \cos (\omega s)+\frac{K_{2} \sin (\omega s)}{\omega} \quad\left\{=p_{0}\left[K_{1}(s), K_{2}(s), s\right]=-K_{1} \omega \cdot \sin (\omega s)+K_{2} \cos (\omega s) \quad\left\{\begin{array}{c}
\frac{d K_{1}}{d s}=\frac{\partial \widetilde{\mathcal{H}}}{\partial p} \\
\frac{d K_{2}}{d s}=-\frac{\partial \widetilde{\mathcal{H}}}{\partial q}
\end{array}\right.\right.
$$

Example for K1

$$
\gamma_{0}=1.14, \rho=42 m, S=3.6 \mathrm{~m}
$$

$x_{0}-0.0006097550903 x_{0}^{2}+0.1670449199 x_{0} x p_{0}+0.08043763479 x_{0}+0.6146223085 x p_{0}^{2}-15.09723022 \delta x p_{0}-2.307731104 \delta^{2}$

doubleprecision function cg (delta, gamma0, S, rho0)
doubleprecision delta
integer gamma0
doubleprecision S
doubleprecision rho0
$\mathrm{cg}=\operatorname{sqrt}(\mathrm{dble}($ gamma0 $* * 2+1)) * S *(0.4 \mathrm{D} 1 * \cos (\mathrm{sqrt}(\mathrm{dble}(\mathrm{ga}$ \#mma0 ** $2+1$) $\left.{ }^{*} \mathrm{~S} / \mathrm{dble}(\mathrm{gamma0}) / \mathrm{rho0}\right)^{*}$ dble(gamma0 ** 2) - d \#ble(gamma0 ** 2) - 0.4D1 * cos(sqrt(dble(gamma0 ** $2+1$)) * S / d \#ble(gamma0) / rho0) + 0.2D1) * $\sin ($ sqrt(dble(gamma0 ** $2+1)$) *S \# / dble(gamma0) / rho0) / dble(gamma0) / rho0 / dble(gamma0 ** 2 -
\# 1)
return
end

Second example: spin transfer function in a hard-edge deflector for a magic ring

$$
\begin{gathered}
\frac{d \vec{S}}{d t}=\vec{\Omega}_{t} \wedge \overrightarrow{\vec{S}} \\
\vec{\Omega}_{t}=\frac{-q}{m c^{2}} \cdot\left(G-\frac{1}{\gamma^{2}-1}\right) \cdot \vec{v} \wedge \vec{E} \quad \Omega=\frac{-q}{m c^{2}} \cdot\left(G-\frac{1}{\gamma_{0}^{2}} \cdot \frac{r_{p}}{p_{0}}\right. \\
\Omega=\frac{2}{\gamma_{0} \cdot \rho_{0}} \cdot\left(\frac{x}{\rho_{0}}+\delta\right)+\frac{1}{\gamma_{0}^{3} \cdot \rho_{0}} \cdot\left[\left(2 \gamma_{0}^{2}+1\right) \frac{x^{2}}{\rho_{0}^{2}}+2 \cdot\left(3 \gamma_{0}^{2}+1\right) \cdot \frac{x}{\rho_{0}} \cdot \delta\right]+\left(3 \gamma_{0}^{2}+1\right) \cdot \delta^{2}
\end{gathered}
$$

Spin evolution can be used by integration of the known second order trajectories

Conclusion

* Tools have been developped for 2D models
* Numerical checking has been done
* A library of formulas is in preparation
* Implementation in Bmad is under way

Critics are welcome and requested

Thank you very much!

