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Overview

Main questions: 

•What is the contribution of fringing fields to spin decoherence (ex: sextupolar component)?

•Why analytical models?
• Easier and faster than finite elements for implementation in beam tracking code

• Gives transfert functions (mapping) for trajectories and spin

• Suited for long term behaviour and analytical model of (eg) one turn mapping and machine design (correction 
by sextuple for instance)

•What is presented
•2D realistic models based on conformal transforms for cylindrical deflectors

•Trajectory of the reference particle (deviates from a circle)

•Transfer functions (non-linear mapping)  for trajectories and spin

Future: finalization of this preliminary work (under way) and implementation in Bmad (under way)

JM DE CONTO, Y GOMEZ, J MICHAUD  - EDM KICK OFF MEETING - MARCH 2017 2



Question: how to get a realistic and accurate model for fields
and fringing fields including boudary conditions ?
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The motivation for analytical calculation is to get accurate
models for code implementation. Finite elements are 
required to check/validate the models and 2D vs 3D



Reminder: Electrostatics in the complex plane

For 𝑧 = 𝑥 + 𝑖 ∙ 𝑦 the conformal transform 𝑍 = 𝐹 𝑧 = 𝑋 + 𝑖 ∙ 𝑌 =
1

𝜋
∙ 1 + 𝑧 + 𝑒𝑧

transforms the infinite planar capacity −∞,+∞ × −𝜋,+𝜋 to an half-infinite planar with gap 
equal to 2 and ending in X=0. 

Potential: 𝑉 𝑍 = 𝑉 𝑧 = 𝑦

Reciprocal:                                            𝑧 = 𝜋𝑍 − 1 −𝑊 𝑒𝜋𝑍−1 with W=Lambert function

More generally, any CT transforms a set of orthogonal lines to another one. The lines describe a 
potential/field lines set

𝑉 = 𝑉𝑠𝑐𝑎𝑙𝑎𝑟 + 𝑖 ∙ 𝜙𝐸

−
𝑑𝑉

𝑑𝑧
= 𝐸 = 𝐸𝑥 − 𝑖 ∙ 𝐸𝑦

In our example:                             𝑉 = 𝑖 ∙ 𝑧 → −𝐸 =
𝑑𝑧

𝑑𝑍
=

1
𝑑𝑍

𝑑𝑧

=
2𝜋𝑖

1+𝑒𝑧
=

𝜋𝑖

1+𝑊 𝑒𝜋𝑍−1
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Step 1: A more realistic profile: a double transform

−
𝜋

2
≤ 𝐼𝑚(𝑧) ≤

𝜋

2
⋮ 𝑇: 𝑧 ↦ 𝑍1 = 1 + 𝑧 + 𝑒𝑧 ↦ 𝑍2 =

1

𝜋
∙ 1.376 + 𝑍1 + 𝑒𝑍1

5

1.376 is only a matter of 
longitudinal origin
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A way to do analytical calculation on a real –Aachen- profile



The (hard) reality: the real deflector

6

𝑻−𝟏

Instead of an infinite planar capacitor
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Gap units



Step 2: including the reality AND square boundary conditions

Questions: 

oHow to get this picture from the infinite
paralel deflector?

oWhat is the green line (average of the zero
equipentials) ?

Anwers: 

1- A new (sorry) conformal transform –
Joukovski-

2- A boundary condition (green) easy to 
compute
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−∞ +∞-1 (A)          0            +1 (B)

Joukowski

𝑖 ∙ 𝑒𝑧



1) The boundaries V=+-1
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We use the Joukovski transform (in fact for any angles)

𝑔1 𝑧 = 0
𝑧 𝑑𝑡

𝑡1/2∙ 𝑡−1 1/4∙ 𝑡+1 1/4 =
5

2
∙ 𝑒−

𝑖∙𝜋

5 ∙ 𝑡2/5 ∙ 𝐻1

5
,
1

5
,
6

5

𝑡2

transforms the line (y=0) into the external contour

The inside (half-plane y>0) is the image of the  y ±
𝜋

2
(infinite parallel deflector) via

𝑔2 𝑧 = 𝑖 ∙ 𝑒𝑧 (previous slide)

Finaly: 𝐺 𝑧 = 0.2 +
𝜋

2
− 𝑔2𝑜𝑔1 𝑧 = 0.2 +

𝜋

2
−

5

2
∙ 𝑒

2

5
𝑧 ∙ 𝐻1

5
,
1

5
,
6

5

𝑒2𝑧 is the solution
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G is not so complicated
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• The reciprocal of G must be calculated
• G is a very regular function
• G is universal (to be inverted one time only!)

In gap units, at second order only:

൯𝐺 𝑥 ~𝑒𝑥𝑝 0.89 + 0.3417𝑥 − 0.0259𝑥2 = 𝑒𝑥𝑝(𝑃 𝑥

Bottom picture: relative error on G(x) for x real (decimal
logarithm)

Used to check the coherence of the model, but has to be improved.The use of
a second order polynomial was only to get a very easy reciprocal for G

G(x)
x in gap units

Log10 relative error
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2) The boundary V=0

oThe average zero-equipotential (for « square » boundary conditions), is close to a circle

oThe circle is the image of a vertical segment

oThe original configuration is not an infinite parallel capacitor but a semi-infinite capacitor
with a vertical segment with V=0
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V=0 for x=0



Last ingredient: the potential in a half box

A well known result : 𝑉 𝑥, 𝑦 = ∞−
+∞ sh(𝜔𝑦)∙sin(𝜔𝑥)

sh(𝜔)∙𝜔
∙ 𝑑𝜔 but unuseful

We found the following nice results (a little bit tricky but useful)

𝑉 𝑥, 𝑦 = න
−∞

+∞ 𝑠ℎ(𝜔𝑦) ∙ sin(𝜔𝑥)

𝜔 ∙ 𝑠ℎ(𝜔)
∙ 𝑑𝜔 = 𝑎𝑟𝑐𝑡𝑎𝑛

𝑠ℎ(𝜋𝑥) ∙ sin(𝜋𝑦)

1 + 𝑐ℎ(𝜋𝑥) ∙ cos(𝜋𝑦)

𝐸 𝑧 = 𝑖 ∙ 𝜋 ∙ 𝑡ℎ
𝜋 ∙ 𝑧

2
→ 𝑉 𝑧 = 𝑖 ∙ 𝑙𝑛 𝑡ℎ2

𝜋 ∙ 𝑧

2
− 1 + 𝜋 ∙ 𝑠𝑖𝑔𝑛(𝐼𝑚 𝑧 ) for 𝑅𝑒(𝑧) ≥ 0

𝑉 𝑧 = 𝑖 ∙ 𝑙𝑛 𝑡ℎ2
𝜋∙𝑧

2
− 1 + 𝜋 ∙ 𝑠𝑖𝑔𝑛(𝐼𝑚 𝑧 ) for 𝑅𝑒(𝑧) ≥ 0

11

V=0 for x=0
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A lot of transformations
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𝐺 𝑧 = 0.2 +
𝜋

2
−
5

2
∙ 𝑒

2
5𝑧 ∙ 𝐻1

5,
1
5,
6
5
𝑒2𝑧 ↦ 𝑍1 = 1 + 𝐺 𝑧 + 𝑒𝐺 𝑧 ↦ 𝑍2 =

1

𝜋
∙ 1.376 + 𝑍1 + 𝑒𝑍1 ↦ 𝑍3 = 𝜌0 ∙ 𝑒

𝑖𝐺∙𝑍3/𝜌0

Here
𝜌0=10 and G=1 for illustration
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To be compiled to get a ready-to-use library for curved or straight deflectors



13

Comparison « naive » deflector / our model/ ANSYS for our model (Log10(Ey) on axis)

Left: parallel capacitor (semi-infinite)

Right: ANSYS (blue line, Julien) versus analytical model (red dots)

boundary conditions at 3 gaps

From Julien Michaud
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Reference particle trajectory
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• Hard edge model not valid
• Trajectory up to zero equipotential has to be

known
• Transverse displacement (0.4 mm?)
• Angle (3 mrad?)

• Calculation done by hamiltonian
• Analytical calculation

• Non-relativistic model (or 𝛾 constant)
• Proof of principle
• To make a first check
• To get the ordrers of magnitude

• Numerical integration of the –independant-
equations of motion for checking

Trajectory of the reference particle with
respect to the circle 𝜌 = 𝜌0
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Equation of motion  with respect to the nominal radius of curvature

From the hamiltonian (for 𝛾 = 1, can be
done for any 𝛾)

Normalized equation

Development in series vs the orthogonal 
polynomials of w

Pi computed by recurrence relations

All integral computed by Legendre 
quadrature

Look for polynomials C and S such as

(solutions of the equation without rht)
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𝑥" =
ℇ − 1

𝜌0
−
ℇ + 1

𝜌0
2 ∙ 𝑥

1

Ω
∙ 𝑥" + 𝑤( ǁ𝑠) ∙ 𝑥 =

−2

𝜌0
∙
𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛

2

4Ω

𝑥 =

𝑖=0

𝑀

)𝛼𝑖 ∙ 𝑃𝑖( ǁ𝑠

)𝐶(−1 )𝑆(−1

)𝐶′(−1 )𝑆′(−1
=

1 0
0 1

𝑥 = 𝜌0 ∙ 1 − 𝐶 ǁ𝑠 + (
−2

𝜌0
∙
𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛

2

4Ω
𝑆 ǁ𝑠 ∙ න

−1

ǁ𝑠

𝐶 𝑡 𝑑𝑡 − 𝐶 ǁ𝑠 ∙ න
−1

ǁ𝑠

𝑆 𝑡 𝑑𝑡

ℇ =
𝐸

𝐸𝑛𝑜𝑚𝑖𝑛𝑎𝑙



Example, for a 40m radius deflector: comparison with Rkutta
integration of motion
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Radial position (meters) absolute error (meters), obtained via RK 

 The position deviates by 0.3 mm (not

so much)

 The angle deviates by 4 mrad (not

negligible)



Second order transfer function in a hard-edge deflector
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ℋ = − 1 +
𝑥

𝜌0
∙

𝛾2 − 1

𝛾0
2 ∙ 𝛽0

2 − 𝑝𝑥
2
+ 𝑝𝑦

2
= ℋ𝑙𝑖𝑛 + ෩ℋ 𝛾 = 𝛾0 ∙ 1 −

𝑉

𝐸0
+
∆𝐸

𝐸0

𝑞0 = 𝑞0 𝐾1, 𝐾2, 𝑠 = 𝑥0 cos 𝜔𝑠 +
𝑥′0sin(𝜔𝑠)

𝜔
𝑝0 = 𝑝0 𝐾1, 𝐾2, 𝑠 = −𝑥0𝜔 ∙ sin 𝜔𝑠 + 𝑥′0cos(𝜔𝑠)

𝑑𝐾1
𝑑𝑠

=
𝜕 ෩ℋ

𝜕𝑝

𝑑𝐾2
𝑑𝑠

= −
𝜕 ෩ℋ

𝜕𝑞

𝑞 = 𝑞0 𝐾1(𝑠), 𝐾2(𝑠), 𝑠 = 𝐾1 cos 𝜔𝑠 +
𝐾2sin(𝜔𝑠)

𝜔
𝑝 = 𝑝0 𝐾1(𝑠), 𝐾2(𝑠), 𝑠 = −𝐾1𝜔 ∙ sin 𝜔𝑠 + 𝐾2cos(𝜔𝑠)

Linear motion

Perturbations – variation of constants



Example for K1 
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𝛾0 = 1.14, 𝜌 = 42𝑚, 𝑆 = 3.6 𝑚

doubleprecision function cg (delta, gamma0, S, rho0)
doubleprecision delta
integer gamma0
doubleprecision S
doubleprecision rho0
cg = sqrt(dble(gamma0 ** 2 + 1)) * S * (0.4D1 * cos(sqrt(dble(ga

#mma0 ** 2 + 1)) * S / dble(gamma0) / rho0) * dble(gamma0 ** 2) - d
#ble(gamma0 ** 2) - 0.4D1 * cos(sqrt(dble(gamma0 ** 2 + 1)) * S / d
#ble(gamma0) / rho0) + 0.2D1) * sin(sqrt(dble(gamma0 ** 2 + 1)) * S
# / dble(gamma0) / rho0) / dble(gamma0) / rho0 / dble(gamma0 ** 2 -
# 1)

return
end

Automatic Fortran code generation



Second example: spin transfer function in a hard-edge deflector for a magic ring
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𝛿 =
𝛾0
2 − 1

𝛾0
2 ∙

∆𝑝

𝑝0

Ω =
−𝑞

𝑚𝑐2
∙ 𝐺 −

1

𝛾2 − 1
∙ 1 +

𝑥

𝜌0
∙ 𝐸 𝑥

Ω =
2

𝛾0 ∙ 𝜌0
∙

𝑥

𝜌0
+ 𝛿 +

1

𝛾0
3 ∙ 𝜌0

∙ 2𝛾0
2 + 1

𝑥2

𝜌0
2 + 2 ∙ 3𝛾0

2 + 1 ∙
𝑥

𝜌0
∙ 𝛿 + 3𝛾0

2 + 1 ∙ 𝛿2

𝑑 Ԧ𝑆

𝑑𝑡
= Ω𝑡⋀

ԦԦ𝑆

Ω𝑡 =
−𝑞

𝑚𝑐2
∙ 𝐺 −

1

𝛾2 − 1
∙ Ԧ𝑣⋀𝐸

Spin evolution can be used by integration of the known second order trajectories



Conclusion

Tools have been developped for 2D models

Numerical checking has been done

A library of formulas is in preparation

Implementation in Bmad is under way

Critics are welcome and requested

Thank you very much!
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