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The magic condition

For proton edm measurement in a storage ring[1] we will use
a beam of spin-polarized protons where the spin dynamics is
governed by the covariant Thomas-Bargman-Michel-Telegdi
T-BMT equation[2]

ds

dt
= −

q

mγ
f × s. (1)

Here s is the real 3-dimensional spin vector of a 1/2-spin particle,
and f is a function of the position and the momentum of the
proton and of the electro-magnetic field encountered by it along
its trajectory. We can say that spin is a passenger on the orbit.

In a pure electrostatic ring, e.g. with no magnets or RF cavities,
f reduces to

f =
(
aγ −

γ

γ2 − 1

)
E× v

c2
, (2)

where a is the spin anomaly, ratio between proton momentum
and spin.

At the magic momentum value pc = mc2/
√
a, it is f = 0, and

the spin remains frozen in its longitudinal direction imposed at
injection.
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Measurement of the proton electric dipole

moment ’pEDM’

In the pure electric ring the spin of these 0.7 GeV polarized
protons should remain frozen in the longitudinal direction for
billion of turns.

However, if the protons possesses an electrical dipole moment
that would be parallel to its spin, this electric moment will be
relativistically seen in the Laboratory frame as a very small ver-
tical spin component that could be measured. The result of this
measurement is the purpose of the experiment.
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Preliminary stage of the project

This experiment requires the design and construction of a large
electrostatic synchrotron with a polarized proton source to pro-
duce and store a beam of 0.5 Gev (the magic energy) polarized
protons. Preliminary stages of the project to address and discuss
in detail are

1. design of the synchrotron

2. preliminary tracking of the proton beam at full energy,
when the synchrotron is a storage ring
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Synchrotron lattice

The ring has a FODO structure with electric bends, quadrupoles,
and straight sections for beam injection, extraction and devices
like, say, a RF cavity and a RF solenoid, sextupoles (to preserve
spin coherence as it will be discussed),

For this we used the CERN package MAD [3], modified to accept
electric bends and other devices. We run MAD through a UNIX
scrip[4] to create tables of horizontal and vertical tune and max
and min of beta function, varying the quadrupole strengths.
Such a table shows the islands of stability of the ring. The
values of βmax, then of the size of the beam, are growing at
the edges of the islands where the betatron tunes decrease.
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Preliminary orbit in the pEDM lattice

Once the design of the lattice was done, we performed a prelim-
inary orbit tracking with first order MAD matrices.It is a ring of
800 m length (taylored on the BNL-AGS tunnel, easily scalable)
with 72 bends of 9 m length. 80 FODO quadrupoles of 2×0.5
m length, 4 drifts of 2×9 m. Values of basic parameters are
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The ring, with 4×18 bends an 8 straights

[5]

February 2015

72 bends− 4 double drifts
each 9 meter

80 FODO quadrupoles

’y2’ pEDM electrostatic ring

total ring length = 800 m
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Electrostatic bends and quads

1. El.static bend matrices to be used in MAD are[7]

α =
√

2− β2, a1 = cos(αθ), a2 = (ρ/α) sin(αθ), a3 = −(α/ρ) sin(αθ),

M =

(
a1 a2 0 0
a3 a1 0 0
0 0 1 Lb
0, 0 0 1

)
, Lb = length of bend

other matrices are Madx′s

2. El.static quadrupoles

gap = 2a = 10cm,

El.gradient :GE =
2V0

a2
, k =

e

mc2

GE

β2γ
, V0 =

a2

2

mc2

e
(β2γ)k

3. For Leapfrog tracking we used a field expansion [9].

7

CERN, Geneva, March 13/14 2017

8



Value (MKSA) and dimension of all ring parameters are

magic proton of
β = 0.59837912.,
γ = 1.24810740,
β2γ = 0.44689430,
k = 0.043,
GE = [kg ·A−1 · s−3]
V0 = 1.42245166.105V,
Eqin the quads = 2.844903.106V/m,
Ebin the bends = 2.54972867.106V/m

Compared with the Stability Table, the above shows that the
working γ of this particle is less that γT (transition) as is desirable
for the pEDM search..

Note that for the optics the quantity of importance is
√
kLq

with Lq the length of the quadrupole. The field in the quadrupole
is proportional to k. Therefore increasing the length of the
quadrupole, but at the same time decreasing k and keeping

√
kLq

constant, can effectively reduce the field.
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Issues for electric accelerator lattices

An electrostatic lattice behaves differently than a classical mag-
netic lattice. In an electric ring device, such as a bend or a
quadrupole, the kinetic energy of a particle is modulated, while
in a magnetic device it is not, since in the Lorentz equation of
motion

dp

dt
= eE + ev ×B (3)

only the scalar driving term eE appears. In a magnetic lattice
it is the vector term to act, where the force is perpendicular to
the velocity.

In the present design we adopted simple cylindrical electrodes
for the bends, that produce only a radial field far from edges.
Note that while magnetic bends do not focus the beam, electric
cylindric bends produce a small horizontal focusing, so that to
produce a FODO (focus-defocus) lattice, that we favor, the
focusing and defocusing quadrupoles are slightly different.

An optional geometry for the bends, other that cylindrical, is
with also a vertical curvature. For the moment we are not
considering this since such geometry is more hard and expensive
to construct with the desired accuracy.
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Examine and compare algorithms and codes

for production orbit tracking

Simulation of an electrostatic storage ring for the pEDM should
be bste done by several competitive algorithms for mutual com-
parison and benchmark.

All codes should be symplectic for stability in the long range, In
particular the continuously calculated Hamiltonian should remain
constant. Tracking should also be fast, because the number ring
turns to measure the pEDM will number in the billions.

It is important to distinguish wether a lattice is dynamic i.e. does
contain elements or devices, like a RF cavity or a RF solenoid
that run on their own cycle, or, otherwise, static because, In the
dynamic case the lattice is changing during orbit tracking.

The Madx tracking described before was based on first order
matrices, It is not symplectic, and was done only for check the
lattice in a first pass.
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Basic types of codes for orbit production

tracking

Call a lattice static if does not contain a variable element, such
as a RF cavity or a RF solenoid, with quantities that vary on
their own cycle. Otherwise call the lattice dynamic. Among
existing orbit tracking codes some visit in order the elements of
the lattice. They work for static and dynamic lattices. No.4
below lumps the entire lattice in a precalculated manifold, then
is hard for use for a dynamic lattice. Some existing codes (no
pretense to be complete) are:

1. track using matrices (Madx2)[3]

2. Runge-Kutta integration of the differential Lorentz equa-
tion (slow) [7]

dp/dt = eE + ev ×B (4)

3. track by kick integration of the same [Teapot-Spink] [8,9]

4. track using a precalculated symplectic manifold for the en-
tire lattice (fast). [Cosy-Infinity] [10]

5. In our work we first used matrices for preliminary tracking
and, after, [LeapFrog] kick integration.
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Our tracking

Value (MKSA) and dimension of all ring parameters are

magic proton of
β = 0.59837912.,
γ = 1.24810740,
β2γ = 0.44689430,
k = 0.043,
GE = [kg ·A−1 · s−3]
V0 = 1.42245166.105V,
Eqin the quads = 2.844903.106V/m,
Ebin the bends = 2.54972867.106V/m

Compared with the Stability Table, the above shows that the
working γ of this particle is less that γT (transition) as is desirable
for the pEDM search..

Note that for the optics the quantity of importance is
√
kLq

with Lq the length of the quadrupole. The field in the quadrupole
is proportional to k. Therefore increasing the length of the
quadrupole, but at the same time decreasing k and keeping

√
kLq

constant, can effectively reduce the field.
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The matrix driven tracking program

loop

MTRACK

INIT

DRIFT

QUAD

BEND

DBDR

BCELL

DBDR

ENERMOD

MATRICES

RAYTRANSFER

(WRITE)

FINIS

GLOBAL

¨uber alles

MTRACK3

loop

flowchart

13

CERN, Geneva, March 13/14 2017

14



betatron oscillations- by matrix tracking
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Our production orbit tracking by Leapfrog

For a production tracking going beyond matrix orbit tracking,
for simplecticity and speed, we considered canonical integration
of the Lorentz diff. equation of motion

dp

dt
= eE + eV × v (5)

by Leapfrog or Verlet kicks[11], method invented by the as-
tronomer Delambre[12] in 1791, and revisiteded for accelerators
by Ronald Ruth[13]. It is a kick integration method that inter-
leaves drifts, where only space coordinates are advanced, with
symplectic kick bends where the momentum components are
advanced. Leapfrog is an algorithm accurate to 2.nd order in
time step. TEAPOT, by R.Talman and L.Schachinger [14] and
[15] is similarly constructed.

Integration algorithms, like Runge-Kutta, used by Semertzidis
and Haciameroglu[16] are accurate to 4.th order in time, are
written with mathematical accuracy in mind, but are compara-
tively slow. The 2.nd order Leapfrog is exactly symplectic, fast
and and written with physical accuracy in mind.

See also comments in [18] and [19].
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Orbit coordinates

In Leapfrog we use Cartesian ”laboratory” coordinates (x, z, y),with
x̂ and ẑ axes in the horizontal plane, and time as the indepen-
dent variable. Electric field components are calculated by a
power expansion in the ”horizontal” x, z plane of the ring

θ

z

x

Er

Ex

Ez

The circular ring lattice shown
is obtained by tracking a ”ref-
erence particle” i.e at nominal
energy injected tangentially.
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Orbit Leapfrog formalism basics

Ménagerie of quantities for the game are:

ro[m] = radius of curvature
a = magnetic anomaly
Uo[GeV ] = mc2, mass− energy
℘ ≡ pc[GeV ] = Uo/

√
a moment

UT [GeV ] =
√
℘2 + U2

o , total energy

γ = UT/mc
2, β =

√
1− 1/γ2

Bρ[V · s/m] = 109℘/c, rigidity
eE[eV/m] = (= ℘/r0)βc Electric bend field

Leapfrog tracking conserves the value of the Hamiltonian, that
is being continuously recalculated during runs.

H =
√

(℘− eA)2 + (mc2)2 + eφ. (6)
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To show how Leapfrog works, we propose 4 examples (1) circular
ring, (2) race-track structure, (3) 8-super-period structure with
8 bends, 8 drifts and 8 electrostatic quadrupoles, (4) simple
magnetic structure (helix)

A basic leapfrog cell is a sequence

drift + momentum kick + drift

Momentum kicks are done by kick integration of the Lorentz
equation, for an electric or magnetic bend, respectively

dp

dt
= eE, or : = eB× v with E = −∇φ, B = ∇×A. (7)

The potential, needed for the Hamiltonian, should obey the
Laplace equation

∇2φ = 0. (8)
(Explicit expressions for φ and A are found by power expansion
across the plane.)

The reference particle, around which the whole beam dances, is
the magic one whose spin would remain frozen in position during
the propagation.
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Leapfrog cell - Electric bend

This is how a reference particle moves on the horizontal plane

d
ri

ft

o

ro

θ

A

C

B

θ

bend

x

z

2θ

drift

r

Fig.1

A →B →C,
drift, kick-bend, drift
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drift A-B

Start in A with Initial coordinates

(A) x = ro, z = 0, ℘x = 0, ℘z = ℘.

Eq’s for the drift, with a time step dt for the drift A→B:

dx

dt
=

℘x

Uoγ
c,

dz

dt
=

℘z

Uoγ
c, or

x := x+ ℘x/(Uoγ)c dt, z := z + ℘z/(Uoγ)c dt

(9)

using the identity ℘ = Uoβγ, we obtain at the kick bend B the
new position

(B) x = ro, z = βc dt, ℘x = 0, ℘z = ℘.
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kick in B

In B a kick is imparted to the momentum pc, using the Lorentz
Equation, with a time step δt, different from the dt of the drift.

℘x := ℘x − eExc δt, ℘z := ℘z − eEzc δt (10)

For cylindrical bend the field E is purely radial, with components

eEx = −eE (ro/r) cos θ eEz = eE (ro/r) sin θ. (11)

Now find the relation between dt and δt for leapfrog i.e:

1. Through the bend the value of the total momentum pc
must be conserved,

2. The trajectory in C should return tangent to the circle, as
in the figure. Namely:

arccos
[
(p(A) · p(C))/p2

]
= 2θ (12)

If both conditions hold, the basic trajectory will be a polygon
circumscribed to the circle. Other particles in the beam will
dance around it in betatron oscillations.
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For condition (1): moment conservation, combining the preced-
ing equations

℘x = −℘/r cos θ βc δt, ℘z = ℘ (1− (1/r) sin θ βc δt) (13)

then after kick (C):

℘2
x + ℘2

z = (pc)2
[
1 + ((βc/r)δt)2 − (2/r) sin θ βc δt

]
. (14)

Since: cos θ = z/r, sin θ = x/r, taking the value of x from Eq.(9),
the term in [ ] in Eq.(14) above reduces to 1 when

δt = 2 dt

For condition (2): new angle, it is calculated from the scalar
product of the momentum before and after the kick

• (A) before kick: ℘x = 0, ℘z = ℘

• (C) after kick: ℘x = −(℘/r) cos θ βc δt, ℘z = ℘
(

1− 2 sin2 θ
)

angle = arccos
℘(A) · ℘(B)

(pc)2
= arccos

(
1− 2 sin2 θ

)
= 2θ q.e.d.
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Reference Trajectory

Let us produce a reference trajectory on the horizontal plane
by Leapfrog tracking along a polygonal pattern tangent to a
structure made of straights (drifts) and circular arcs (bends).
So, The leap-frog orbit is slightly longer than the reference orbit.
The more kicks we put in a bend the lesser this difference is.

In an example of a structure with 8 bends and 8 drifts of circa
270 m of total length, using 32 kicks in each bend of 36 m of
radius, the difference in effective radius between the geometrical
base line and the polygon is about 1 mm.

The step is much larger than the required step of a solution
by integration for similar accuracy, with a very large gain in
computing speed.

Tracking a reference particle will create a reference trajectory.
An example is shown in the following picture.
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Reference Trajectory by tracking

Four bends and four straights

Note that using Leapfrog the reference particle is actually //
designing the lattice !

Fig.2

72 bends
bend length=28.276 m
drift length 4× 20 m
curvature radius ρ = 114.59m
entire ring length = 800 m
Ecyl = 3.659157107 V/m
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Evaluation of the electric field

o

d

D

D

dD

d

D

d

θ = π/4

0

θ
 =

 π
/4

0

r o

r

Fig.3

In a general lattice the center
of curvature for the calculation
of the electric field
continuously changes
and has to be re-evaluated
every time

The sketch
(for the preceding lattice)
suggests how

’D’ is any added drift space
’d’ is a leapfrog inner-bend drift
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General tracking

The Leapfrog formalism extends to 3 dimensions and applies
unchanged to particles that don’t have a magic energy or are
injected in the lattice on a finite transverse emittance.

Eqs.(9) and .(10) in 3 dimensions are{
x := x+ ℘x/(Uoγ)c dt
y := y + ℘y/(Uoγ)c dt
z := z + ℘z/(Uoγ)c dt

,
℘x := ℘x − eEx2c dt
℘y := ℘y − eEy2c dt
℘z := ℘z − eEz2c dt

. (15)

However, In a general case the leapfrog conditions (1) for mo-
mentum and angle are not fully satisfied in a bend because, due
to transverse oscillations, the particle sees a tangential compo-
nent of the electric field that modulates the energy.

During tracking the Hamiltonian is continuously calculated. It
conserves its initial vaiue.
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Fig.4 x,y betatron oscillations vs. turn #
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Add a RF - Example of RF bucket

Fig.5 - Phase space of ∆× pc for two particles, with
dp/p = 1.e−4 and 2.e−4, with VRF = 1000V and h = 24. Number

of turns for a complete oscillations is 335, corresponding
synchrotron frequency νs = 0.002985 oscillations per turn
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Briefly on Spin Dynamics: EDM

Spin kicks, applied at each Bend and Quad, follow the leapfrog
pattern of the orbit.

At the magic energy it is F = 0 and the spin remains frozen
If the proton has an EDM, the spin is Not completely frozen:
in the rest frame of the particle, the electric field appears as a
magnetic field B’ ⊥ to E and another small term is added to f
in Eq.(2)

B′ = −γ~β × E. f := f + ηB′ × v. (16)

The spin will make a precession around this magnetic field and
a spin vertical component will appear, that can be measured.
For a magic proton this is the only non vanishing additional spin
component.
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Spin dynamics of a frozen spin

Fig.8 - Longit. component of the frozen spin: red line in accel-
erator coordinates, green line, in laboratory coordinates. The
red line shows little wiggles because the responsible proton is on
purpose not perfectly magic and there are betatron oscillations.
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At the very beginning of tracking, at B, after the drift, it is

vx = 0, vz = v, (17)

so, according to (18) only px would receive a kick, which is
paradoxical -but a toll one pays using kick formalism- because a
magnetic force cannot change the total momentum. After the
kick we may therefore write

℘x = ℘
v

r0
δt, ℘z = ℘

√
1−

℘2
x

℘2
(18)

For a magnetic kick the 1.st leapfrog condition should be
satisfied for free by default. The 2.nd leapfrog condition for
the angle still calls for a relation between dt, the time step for
a drift, and δt, the time step for a bend.

We see from Fig.??, that at the beginning, the polygonal con-
dition for the kick bend angle requires:

℘x

℘z
= tan 2θ =

2 tan θ

1− tan2 θ
. (19)
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(1)Tracking a full beam

(2)Spin Coherence

The pEDM game is only complete when we address two very
important aspects:

1. Tracking a full beam of many particles, with a certain emit-
tance and energy spread

2. Address the issue of spin coherence.

Both Task(s1) can be addressed by parallel computing on a
multi-processor mainframe. One should first produce a popula-
tion of particles that represents the beam and then run in parallel
for each particle. Typically, we worked on samples of, say 240
particle and processes using a parallel library like MPI (Message
Passing Interface)[19].

For Task(2) we should calculate the spin tune from the eigen-
values of the spin tune matrix of each particle. Spin tunes for
the beam form a spin tune line. The spin coherence of the beam
is inversely proportional to the spin tune linewidth.

In our study of the spin coherence during simulation on the spin
polarization measurements done on the polarized proton beam
of COSY[12], it was confirmed that use of sextupoles in the ring
would increase the spin coherence of the beam.
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