THOUGHTS ABOUT ND

S. BORDONI, P. SALA

NEUTRINO OSCILLATIONS

Neutrino oscillations experiments are based on the comparison of neutrino interactions at the near and far sites

$$\frac{N_{events}^{far}(E_{\nu})}{N_{events}(E_{\nu})} = P_{osc}(E_{\nu})$$

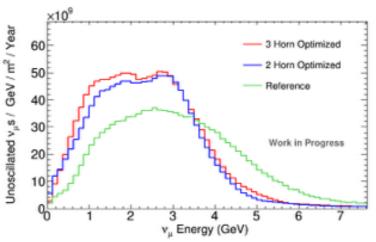
For a given neutrino energy, the number of events can be determined knowing flux and cross-section

$$Near Detector$$

$$Nevents(E_{\nu}) = \sigma_{\nu}(E_{\nu})\Phi(E_{\nu})$$

$$e^{asy}$$

$$Far Detector$$


$$N_{events}^{far}(E_{\nu}) = \sigma_{\nu}(E_{\nu})\Phi(E_{\nu})P_{osc}(E_{\nu})$$

NEUTRINO OSCILLATIONS

- But we don't know the neutrino energy because beams are not monochromatic : has to be determined event by event
- The energy estimation is not trivial and might not be perfect
- Furthermore, the oscillations introduce differences in the flux spectrum
- as a consequence: not perfect cancelation of the cross-section and flux dependencies in the ratio

$$\frac{N_{events}^{far}(E_{\nu})}{N_{events}(E_{\nu})} = \frac{\int \sigma(E_{\nu}')\Phi(E_{\nu}')P(E_{\nu}|E_{\nu}')P_{osc}(E_{\nu}')dE_{\nu}'}{\int \sigma(E_{\nu}')\Phi(E_{\nu}')P(E_{\nu}|E_{\nu}')dE_{\nu}'}$$

Oscillation experiments needs to know : $\Phi(E_{\nu})$, $\sigma(E_{\nu})$, $P(E_{\nu}|E'_{\nu})$

72K

NOvA

FROM LATEST OA MEASUREMENTS

Source of uncertainty (number of parameters)	$\delta n_{ m SK}^{ m exp}/n_{ m SK}^{ m exp}$	
source of uncertainty (number of parameters)	neutrino mode	antineutrino mode
Flux+ ND280 constrained cross section (without ND280 fit result) (61)	10.81%	11.92%
Flux+ ND280 constrained cross section (using ND280 fit result) (61)	2.79%	3.26%
Flux $+$ all cross section (65)	2.90%	3.35%
Super-Kamiokande detector systematics (12)	3.86%	3.31%
Pion FSI and re-interactions (12)	1.48%	2.06%
Total (77)	5.06%	5.19%

Systematic	Effect on sin ² (θ ₂₃)	Effect on Δm^{2}_{32}
Normalisation	± 1.0%	± 0.2 %
Muon E scale	± 2.2%	± 0.8 %
Calibration	± 2.0 %	± 0.2 %
Relative E scale	± 2.0 %	± 0.9 %
Cross sections + FSI	± 0.6 %	± 0.5 %
Osc. parameters	± 0.7 %	± 1.5 %
Beam backgrounds	± 0.9 %	± 0.5 %
Scintillation model	± 0.7 %	±0.1%
All systematics	± 3.4 %	± 2.4 %
Stat. Uncertainty	± 4.1 %	± 3.5 %

Near Detector tasks

- Measure the incoming flux
- Measure neutrino cross-section
- Determine the energy of the incoming neutrinos
 - need low threshold
 - need excellent e/γ separation
 - ...

ND EFFORT IN DUNE

- Dune is strengthening the effort towards a final design of the near detector. The time scale is ~1 year
- From the latest March Workshop, DUNE is moving towards an hybrid design.
 - Composite detector (like general purpose HEP detector)?
 - More than one detectors to address different questions?
- Design is still 100% open. Needs to carefully think to purposes and measurements we need/want to perform at the ND to determine the most suitable design.
- Many interesting talks at the workshop, here some links (arbitrary choice)
 - <u>Flux measurements</u>
 - <u>requirements for a ND</u>
 - Method to evaluate ND optimisation options

Dune ND working group : taking over from Task Force Conveners: Kam-Biu Luk and Alfons Weber

MAIN TOPICS BEING QUESTIONED

- Flux measurements usually imply Flux

 cross-section measurements. Is it possible to achieve independent flux measurements?
 - low-v, v-e elastic scattering
- The neutrino-nucleus cross-section is not well known. Which measurements can help to improve the current modelling?
 - Electron scattering data, pion cross-section in Ar for FSI, Reduce the $\sigma_{\nu_{\mu}}/\sigma_{\nu_{e}}$ error

Which is the best (= updated/ complete) event generator in the market ?

- GENIE, NEUT, NuWRO, NUISANCE , FLUKA (need some developments)
- What is the most robust analysis strategy ?
 - Fits (à la T2K), matrices (à la MINOS and/or NOvA)
- Do we need a magnetised ND?

Meeting 9th May

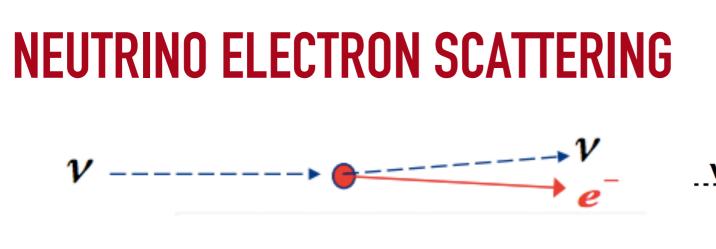
LOW- ν FLUX DETERMINATION

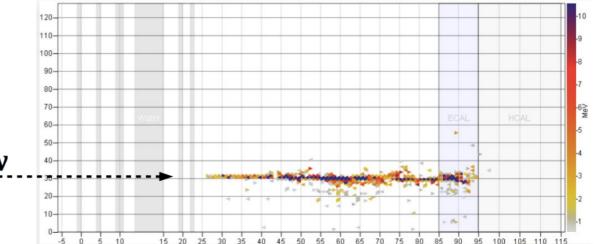
- ► ν is the energy of the final state hadron in the laboratory framework $\nu = E_{had} = E_{\nu} - E_{\mu}$
- The differential cross section can be written as

reference talk

 $\gamma, Z, W (q=k-k)$

1 (k


l (k)


$$\frac{d\sigma}{d\nu} = A + B\frac{\nu}{E} - C\frac{\nu^2}{2E^2} \qquad A, B, C \text{ are integrals of structure functions}} \xrightarrow{p(P)} \xrightarrow{p(P)} \xrightarrow{\chi(p+q)} X(p+q)$$
In the limit $\nu/E \to 0$ $\lim_{\frac{\nu}{E} \to 0} \frac{d\sigma}{d\nu} = A$ $\lim_{\frac{\nu}{E} \to 0} \frac{dN}{d\nu} \simeq \Phi A$ independent from the neutrino energy

Measure the shape of the neutrino spectrum. Need normalisation to external measurement to extract the absolute flux

Comments: Needs good reconstruction of lepton and hadronic energy

- → Containment, detection of neutrons.
- → LAr not so good (maybe if dopants) , plastic scintillator could work

- Cross section well known : purely electroweak
- No nuclear effects
- Very forward single electron final state. Need very good angular resolution (<10 mrad)
- Can measure total flux, shape is more difficult

Possible requirements Low density detector to suppress multiple scattering High granularity tracking Non negligible mass needed (1 – 3 tons) , nearby position preferred Gas TPC? Straw tube Tracker? (ex-baseline ND)

CROSS SECTIONS – DETECTOR EFFECTS

- Nuclear effects have proven to be important and TRICKY (never know if we describe everything correctly...)
- Reconstruction efficiency/cuts/biases enter in oscillation analysis

To control those aspects, it recommanded to have:

- o same target nucleus as in Far Detector
- o similar detection technique or at least similar density
- o same/larger acceptance than in Far Detector

Possible options:

Ar gas TPC ? (+ calorimeter)

LAr TPC ? (small (order few tons) + calorimeter)

LAr with different readout?

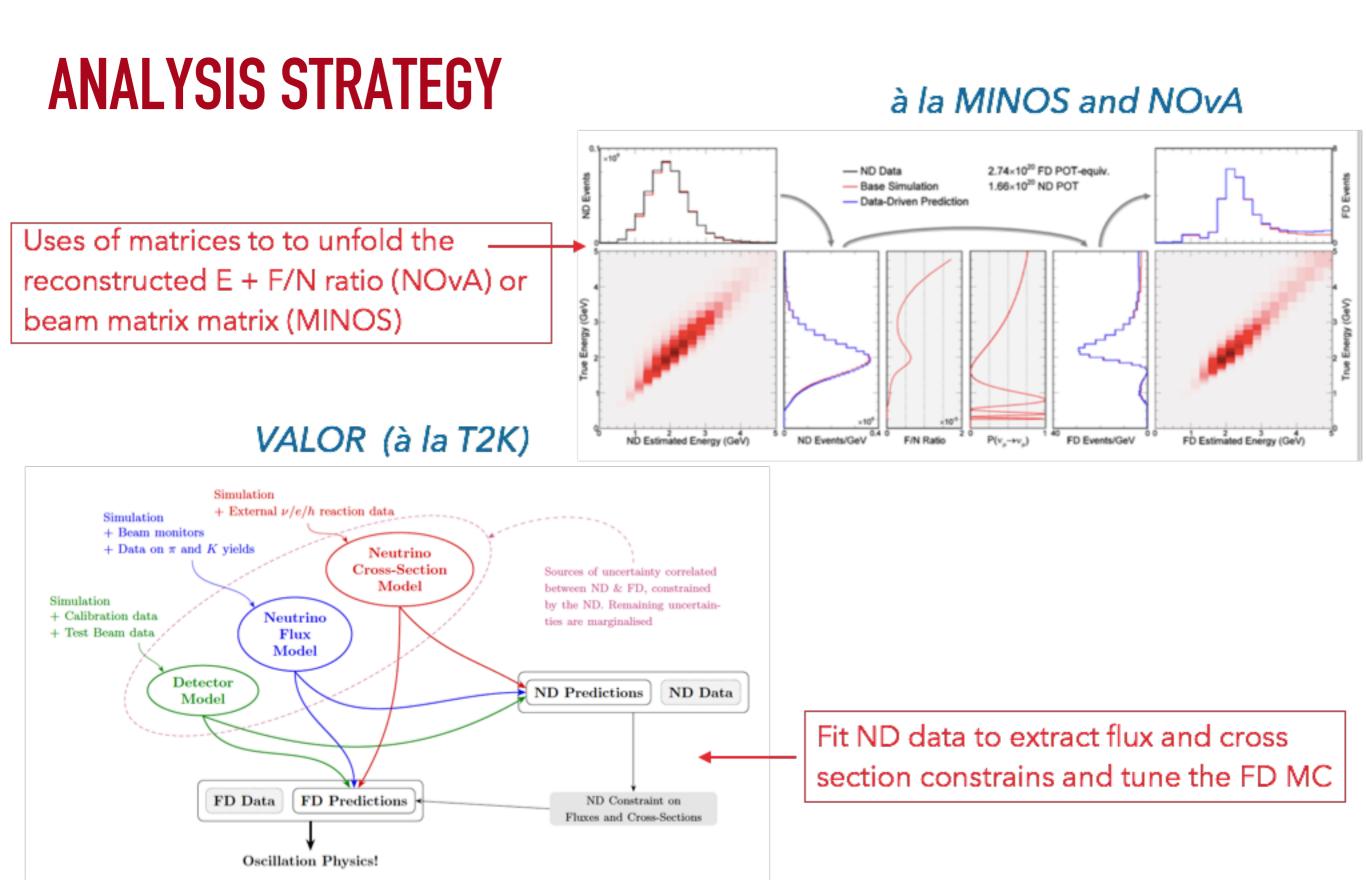
Ar target in other detector (bad, needs subtractions..)

DETECTORS OPTIONS ON THE TABLE

- Ex-baseline: straw trackers in magnetic field, calorimeter around, might interleave Ar layers
- LAr gas TPC, following developments for T2K, + surroundings
- Scintillator à la MINERvA , maybe preceded by LAr box
- LrA modular small drift detector: Argoncube , could be magnetized
- CALICE: high granularity scintillator prototypes
- Reuse KLOE (high granularity scintillator fibre calorimeter in B field, central cavity to be filled with tracker/Lar/gAr...)
- More?

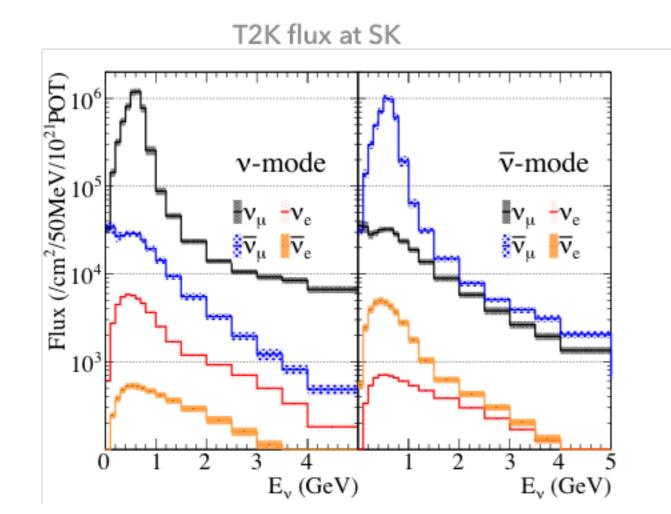
Consensus on : we need a complex system..or maybe two

NEUTRINO GENERATORS

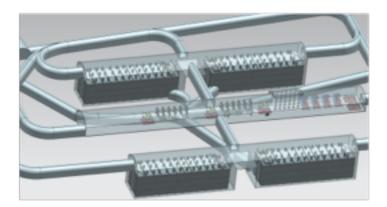

- In the past few years remarkable achievements.
- Several generators available with different approaches
- Some comparison with electron scattering data on-going

from <u>J. Nowak talk</u> at				
IPPP/NuSTEC Workshop				

Model/generator	GENIE (2.14 defaul)	NuWro	NEUT	Fluka
QE	Lwlyn-Smith Nieves, Eff MA	Lwlyn-Smith RPA	Lwlyn-Smith Eff RPA	Lwlyn-Smith
Nuclear model	RFG, LFG, Effective spectral function	RFG, LFG, spectral function	RFG, LFG, spectral function	LFG
MEC	Valencia Empirical	Valencia Marteau	Valencia	- Dain Sahaal (dalta
Delta model	Rein-Sehgal (updated)	Home-grown, great	Rein-Sehgal (update)	Rein-Sehgal (delta only)
Coherent	Rein-Sehgal(corrected) Berger-Sehgal	Rein-Sehgal Berger-Sehgal	Rein-Sehgal Berger-Sehgal	-
FSI	Schematic Cascade (med corr)	Cascade(med corr)	Cascade (med corr)	Cascade+pion abs+pre-eq+evap
			S. Dytman	


 $\sigma(\nu_{\mu}) / \sigma(\nu_{e})$ differences due to lepton mass:

- \rightarrow Nuclear effects (again!)
- \rightarrow Radiative corrections (easier)



MAGNETISED DETECTOR ?

Far detector are usually huge and not magnetised: need to know the wrong sign contamination (e.g. neutrino in antineutrino beams) by the ND! → magnetised!

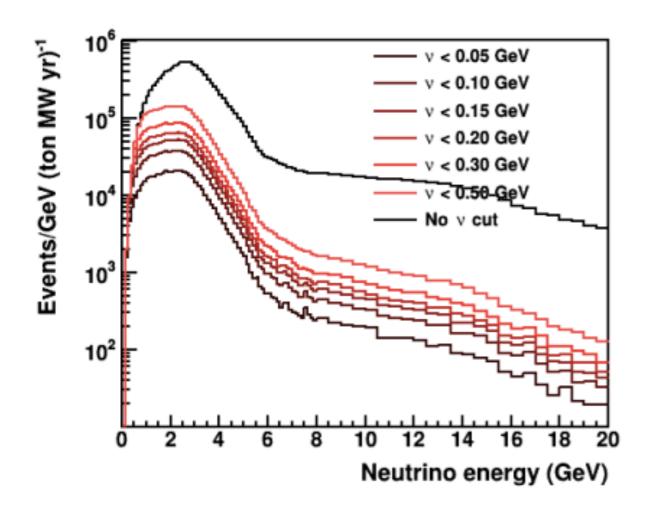
DUNE

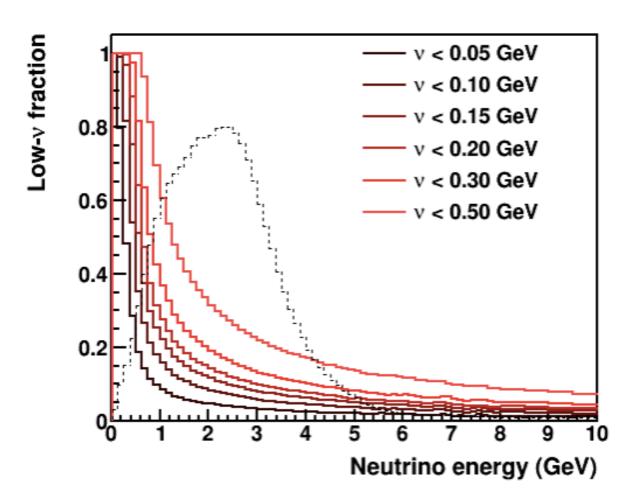
SK

HK

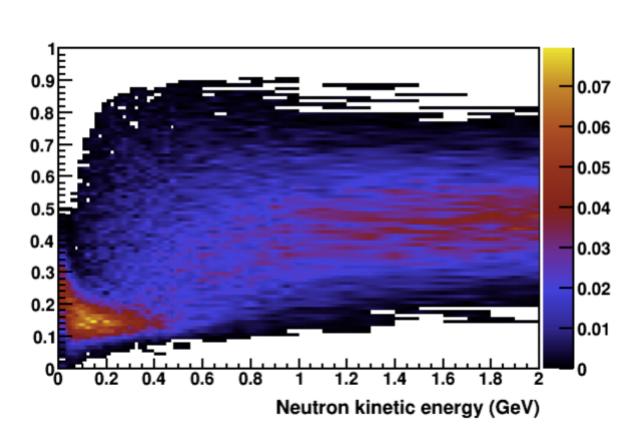
Having a magnetised detector will also allow to measure muons

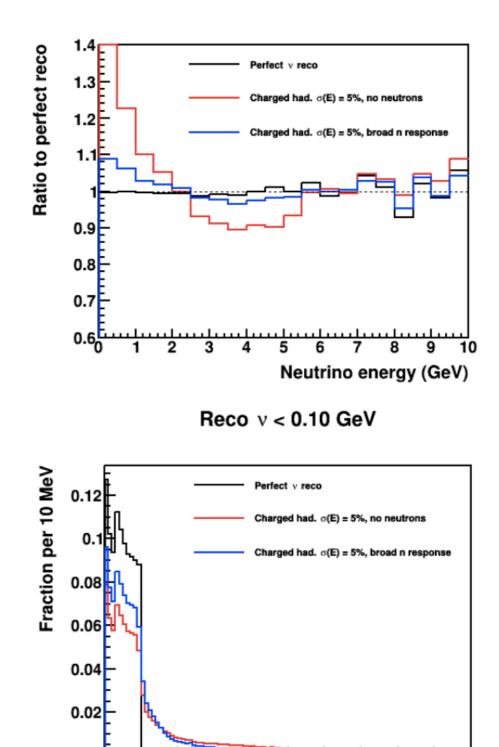
ND EFFORT AT CERN ?


- Determine interests and expertise from our group and start to contribute to the DUNE effort
- Considering invitation of experts/collaborators for some visiting at CERN to work together e.g.
 - ► Milind (BNL) → e-nu scattering
 - ► Xin → figures of merits with matrices


 Join the study of some topics and contribute to list-down requirements for a ND

In the backup slides some other material...

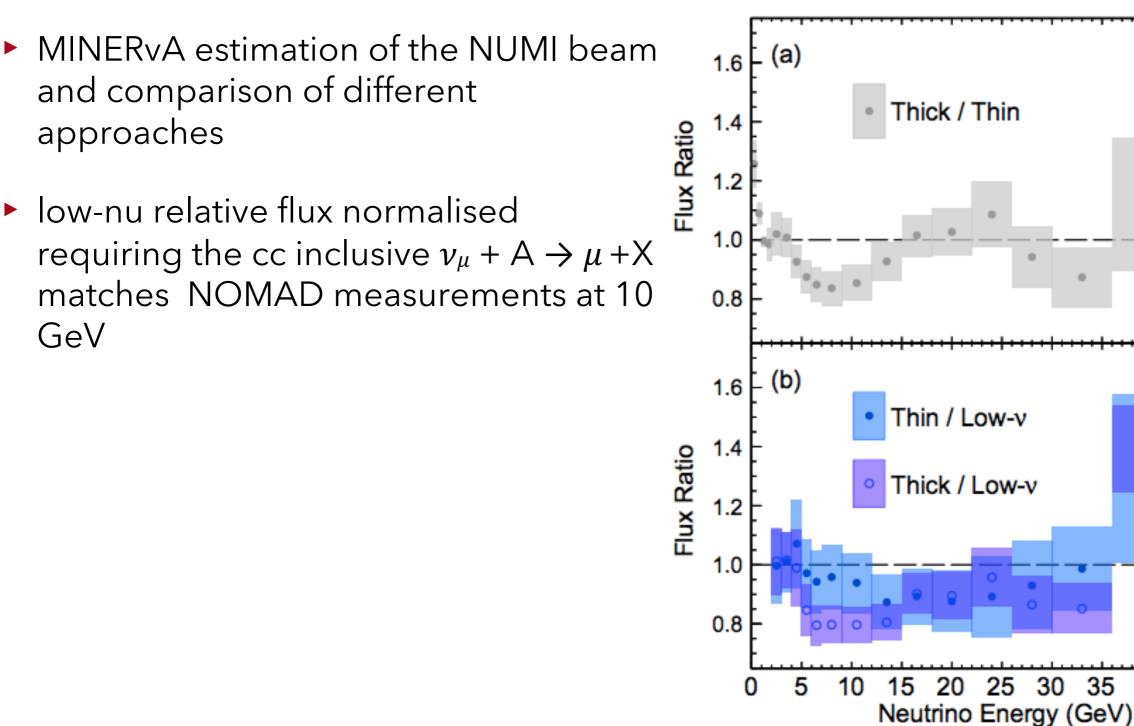



LOW- ν FLUX DETERMINATION

LOW- ν METHOD FOR FLUX DETERMINATION

°

0.1

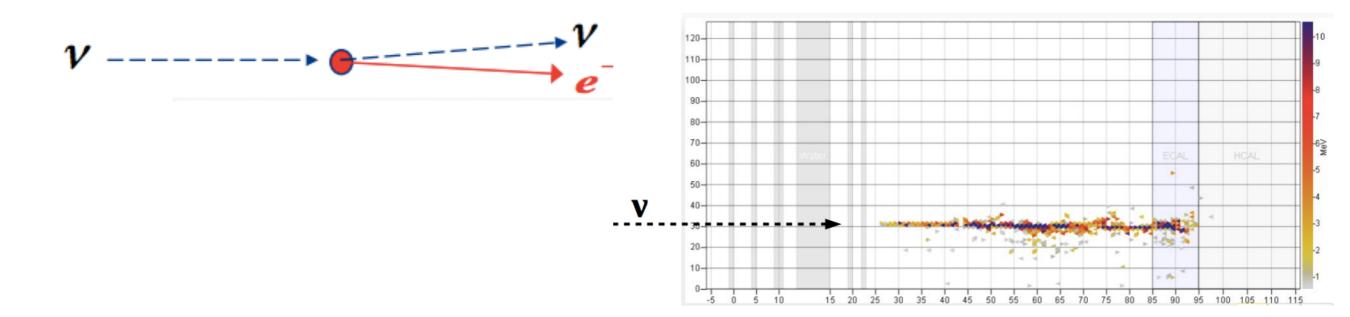

True v (GeV)

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

$LOW - \nu$ FLUX DETERMINATION

arXiv:1607.00704

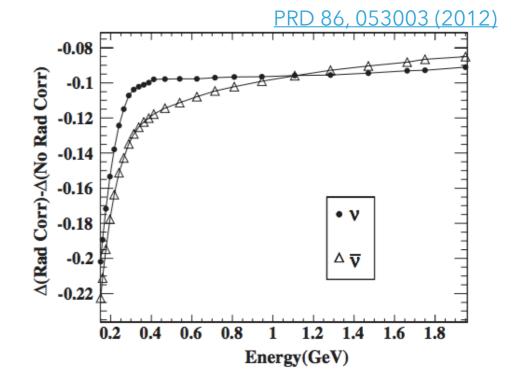


45

40

50

NEUTRINO ELECTRON SCATTERING



 $\sigma(\nu_{\mu}) / \sigma(\nu_{e})$

- Uncertainties between these cross sections contributes to the current experimental uncertainties of OA
- Differences arises from the final state lepton mass
- Differences are studied for CCQE cross-sections:
 - not-calculable differences: interaction quarks inside a nucleon, nucleon inside a nucleus
 - calculable differences: radiative corrections in CC interactions with fundamental fermion

Approximative calculation giving ~10% errors

models included in the generators: e.g. RFG (GENIE, NEUT, NUANCE) , spectral functions (NuWRO) or FLUKA

