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Outline

• Hypothesis testing framework

• Application to discovery, limits, confidence intervals

• How to read Higgs search plots
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Likelihood function

• Suppose the result of the experiment given by ~x of numbers

• Joint pdf for the result given

f(~x, θ)

• Consider this expression as a function θ for fixed measured values ~x.

• This is the Likelihood function

L(~x, θ) = f(~x, θ)

• n independent observation → product of probabilities

L(~x, θ) =

n∏
i=1

f(xi, θ) xi constant
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Maximum likelihood estimator

• Observation: Likelihood function large if θ close to the true value

• → An estimator θ̂ of the true parameter θ is obtained by finding θ̂ which
maximizes the likelihood

∂L

∂θ

∣∣∣∣
θ=θ̂

= 0
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Hypothesis tests

• We want to make a decision given observed data

• Compatibility of assumed model (discovery), compatibility of a model
parameter (limits or confidence intervals) with data

• Place a cut event-by-event to distinguish signal/background

• Hypothesis H defines probability to observe data ~x, f(~x|H) (likelihood)

– ~x e.g. single particle, single event, entire experiment
– All possible values of ~x define sample space Ω

• Simple (point) hypothesis - f(~x|H) completely specified

• Composite hypothesis - f(~x|H) contains one or more unspecified parameters
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Hypothesis test (frequentistic approach)

• Suppose null hypothesis H0 and alternative hypothesis H1

• The test is defined by a specific choice of a crictical region K = part of the
data space where events fall with a probability α if H0 is valid

P (x ∈ K|H0) ≤ α

• α called size of test, typically a small number

• Define the critical region before taking data

• Carry experiment

– If ~x falls in K → rejects hypothesis H0
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Errors and Power of the Test

Type I Error

• Probability to reject the hypothesis, H0, even if true (no larger than size of
the test)

P (x ∈ K|H0) ≤ α

Type II Error

• Probability to accept the hypothesis H0, when alternative H1 is true

P (x /∈ K|H1) = β

Test Power

• Power of the test with respect to the alternative H1

Power = 1− β
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How to choose a critical region?

• The choice of critical region will depend on the relevant alternatives H1

• Want to maximize power with respect to H1 → reject H0 if H1 is true

• Often such a test has high power not only to one specific simple hypothesis,
but also wrt. to a class of hypothesis

• Example: a measurement of x ∼ N(µ, σ) (σ known)

– H0: µ = µ0

– versus H1: µ > µ0 (composite hyp.)
– The highest power with respect to µ > µ0 is obtained by defining the

critical region as x > xc. The exact value is determined by the size of
the test α = P (x ≥ xc|µ0)
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Test of µ = µ0 vs. µ > µ0 with x ∼ N(µ, σ)

α = 1− Φ

(
xc − µ0

σ

)
xc = µ0 + σΦ−1(1− α)

Φ - Gaussian cumulative distribution
Φ−1 - Gaussian quantile

Power = 1− β = P (x > xc) =

1− Φ

(
xc − µ
σ

+ Φ−1(1− α)

)
• large power for large values of µ

parameter

O. Kepka page 9



Critical region for two sided test

• We may want to construct the test
to be sensitive to both µ > µ0 and
µ < µ0

• Case for confidence interval
construction

• Significant improvement for µ < µ0

• Smaller power for µ > µ0 than
one-sided test

Illustration that generally there does not exist a test which would be most
powerful with respect to any hypothesis
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Test statistics

• The optimal critical region is often complicated selection in n-dimensional
space

• Boundary of the critical region can be defined by

t(x1, . . . , xn) = tc

where the scalar function t(x1, . . . , xn) is called test statistic.

• Once we find out the distributions
of t under null g(t|H0) and
alternative g(t|H1) hypotheses, t
can be used to define the test

• Reduction of the n-dimensional to
1-dimensional problem
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Constructing a test statistics

Neyman-Pearson lemma:

• Allows to choose the critical region in an optimal way

• To obtain the highest power of a test of simple hypothesis H0 wrt. to simple
alternative hypothesis H1, the critical region should be chosen such that
likelihood ratio is

f(x|H1)

f(x|H0)
> k

for all x ∈ K, and less than k for x outside K. The value of k is chosen such
that the test has size α.

Equivalent formulation:

• The test statistic giving highest power of the test is

t =
f(x|H1)

f(x|H0)
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Simple example

• Each event characterized by two variables, ~x = {x1, x2}
• Background hypothesis (H0)

f(~x|H0) =
1

ξ1
e−x1/ξ1

1

ξ1
e−x2/ξ2

• Signal hypothesis (alternative H1)

f(~x|H1) = C
1√

2πσ1
e−(x1−µ1)

2/2σ2
1

1√
2πσ1

e−(x2−µ2)
2/2σ2

2

with xi > 0 and normalization C.
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Test statistic

• We know the pdfs of f(~x|H0) and f(~x|H1) → can evaluate t = f(~x|H1)
f(~x|H0)

• In general this is not the case → multivariate techniques used to
approximate LLR to get best out of data

• Contour of constant likelihood ratio defines the critical region
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Event selection using LLR

• Use MC experiments to determine the distribution of t or equivalently of q

q =

(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2

− 2x1
ξ1
− 2x1

ξ2
= −2 ln(t) + C̃

Generate events

• according to H1 → f(q|H1)

• according to H0 → f(q|H0)

• N-P Lemma implies that by placing a
cut, we select the signal with highest
efficiency (test power) for a given
background contamination (size of a
test)

O. Kepka page 15



Search for a signal

• Suppose that signal does not exist → search

• Hypotheses are

– H0: events are only background (b events)
– H1: events are mixture signal + background (s+ b events)

• Discovery: reject H0 with large significance

• Likelihood function given H0

Lb =
bn

n!
e−b

n∏
i=1

f(~xi|b)

• Likelihood function given H1

Ls+b =
(s+ b)n

n!
e−(s+b)

n∏
i=1

(
s

s+ b
f(~xi|s) +

b

s+ b
f(~xi|b)

)
• Test statistic

Q = −2 ln
Ls+b
Lb
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p-value

• Used to describe the level of compatibility of data with hypothesis H

• Probability, using hypothesis H, to observe data with equal or worse
agreement than what we actually have seen in data

pH =

∞∫
t(obs)

f(t′|H)dt′

• Significance Z - defined as number of standard deviations a Gaussian variable
would fluctuate in one direction to give the same p-value.

Z = Φ−1(1− p)

• Discovery Z = 5, p-value= 2.9× 10−7
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Distribution of Q

• Q = −2 ln Ls+b
Lb

• If ps+b < α at confidence level 1− α
• If pb < 2.9× 10−7, reject background only (Z = 5)
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Test Choices

• Discovery

– H0: background only hypothesis
– H1: events are mixture signal + background
– Reject H0 (typically Z = 5 significance)

• Limit

– H0: events are mixture signal + background
– H1: background only hypothesis
– Upper limit: reject s which gives too high prediction for the signal yield

(s+ b > b e.g. Higgs mass search)
– Lower limit: reject s which gives too low prediction for the signal yield

(s+ b < b e.g. neutrino disappearance)
• Confidence intervals

– H0: events are mixture signal + background
– H1: background only hypothesis
– Reject H0, parameters s which give both too high and too low

predictions for the signal yield
– Parameters s not rejected → CL intervals for s at confidence level (1-α)

• CL = 1− α typically 95% for limit and 68% for confidence interval
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Prototype analysis for profile likelihood ratio

• Suppose that a search analysis for signal is carried using some variable x
leading to histogram (e.g. mass distribution mγγ)

n = {n1, . . . , nN}

• Assume that ni are Poisson distributed

E[ni] = µsi + bi

with signal strength µ and
signal and background predictions.

si = stot

∫
bin i

fs(x;θs)dx bi = btot

∫
bin i

fb(x;θb)dx
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Control region for prototype analysis

• Often control regions are defined in the analysis to constrain some of the
unknown parameters (e.g. with different selection cuts)

• Suppose that we have M auxiliary measurement

m = {m1, . . . ,mM}

each Poisson distributed with the expectation value

E[mi] = ui(θ)

• θ = (btot,θs,θb) called nuisance parameters
Likelihood function of the problem

L(µ,θ) =

N∏
i=1

(µsi + bi)
nk

nj !
e−(µsi+bi)

M∏
j=1

u
mj
j

mj !
e−uj

• Note the implicit dependence on many nuisance parameters

• Only one parameter of interest µ
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Profile likelihood ratio

• Test based on profiled likelihood ratio test statistic

λ(µ) =
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)

• L(µ,
ˆ̂
θ) - maximize L for given µ; parameters

ˆ̂
θ estimated from data

• L(µ̂, θ̂) - find global maximum of L to determine µ̂ and θ̂ estimates

• 0 < λ(µ) < 1

– λ = 1 - good agreement with data, µ̂ comes out close to µ
– λ = 0 - model does not agree with data

• Test based on profile likelihood ratio gives near optimum performance
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Test statistic for discovery

• Aim to reject background-only (µ = 0) hypothesis with

q0 =

−2 lnλ(0) = −2 ln L(0,
ˆ̂
θ)

L(µ̂,θ̂)
µ̂ ≥ 0

0 µ̂ < 0

• Only positive values of µ̂ regarded as evidence against H0

• Note in ’neutrino disappearance’ experiment, the interesting region is µ̂ ≤ 0

• Large values of q0, increasing discrepancy

• p0 =
∞∫

q0,obs

f(q0|H0)dq0

• if p0 < 2.9× 10−7 → discovery

• Note that H1 not explicitly present.
However alternative hypothesis determines
the test to look for excess of events.
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Expected sensitivity

• In the planing phase of the experiment, we want to know the expected
sensitivity to reject background hypothesis given some alternative H1

• Generate pseudo-experiments using alternative hypothesis H1: µ = µ′

• Take the median as the expected q0,obs and calculate p-value

• For p-value, we need f(q0|0), for sensitivity
f(q0|µ)
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Asymptotic formulae

• Profile likelihood ratio for large n → exponential form
• Simple asymptotic formulae for f(q0|0), f(q0|µ)
• p-value of µ = 0 hypothesis

p0 = 1− Φ(
√
q0)

• Significance of observed signal Z

Z = Φ−1(1− p0) =
√
q0

• n ∼ Poiss(µs + b)

• m ∼ Poiss(b)

• Asymptotic formulae are good
approximation for discovery
(q0 = 25) for b > 25
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Test for upper limits

• Aim is to reject large values of µ which are incompatible with data µ̂

qµ =

−2 lnλ(µ) = −2 ln L(µ,
ˆ̂
θ)

L(µ̂,θ̂)
µ̂ ≤ µ

0 µ̂ > µ

• Only small values of µ̂ regarded as evidence to reject H0: µ 6= 0 with
alternative H1: µ = 0

• pµ =
∞∫

qµ,obs

f(qµ|µ)dq

• 95% CL is the highest value of µ for which the p-value is not less than size of
the test α = 0.05.
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Unified (Feldman-Cousin) intervals

• Aim is to reject large and low values of µ which are incompatible with data µ̂

qµ = −2 lnλ(µ)

• Essentially the statistic used for Feldman-Cousin intervals
G. Feldman and R.D. Cousins, Phys. Rev. D 57 (1998) 3873

• Here also including treatment of nuisance parameters

• Asymptotic formulae for discovery, limits, intervals
Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

• RooStat framework

– Implements profile likelihood statistic
– Allows to formulate the statistical model and perform MC

pseudo-experiments for test inversion
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Limits in experiments with low sensitivity

If model predicts very small signal (µ), we can run into problem excluding a
parameter to which we have small or no sensitivity

Q = −2 ln
Ls+b
Lb

• Reject s+ b (µ > 0) hypothesis if
ps+b < α

• For µ ∼ 0, parameter µ rejected
with a probability ∼ α size of the
test

• Typically α = 0.05, on average
every 20th limit measurement would
give spurious exclusion

O. Kepka page 28



CLs method

• Instead of the usual p-value (CLs+b), define the test using ratio of the CLb
which equals to 1− pb
Alex Read, J. Phys., G28, 2002, 2693-2704.

CLs =
CLs+b
CLb

=
ps+b

1− pb

• Reject the null s+ b hypothesis
if CLs < α

• 1/(1− pb) large when Q
distribution close → prevent
exclusion for low sensitivity

• In a way reduce Type II Error
(accept H0 when H1 true)
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Setting limits on µ = σ/σSM

• The CLs limit procedure results in a upper limit on the production µup

• Can be repeated as a function of some variable (mH , mll, . . . )

• Pseudo-experiments used to sample what is the distribution of µup under
background only hypotheses

µ
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• Dashed: asymptotic formulae

• Green (yellow): 1σ (2σ) expected
limit from toy MC
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Limit example: Higgs search

• The model has only one unknown parameter, Higgs mass

• A scaling factor, µ, on the Higgs cross-section used as a second parameter
ATLAS-CONF-2011-163
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• Expecting to exclude SM higgs
from 110 GeV - 580 GeV

O. Kepka page 31

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-163/


Local p-value

• Local p-value shows compatibility with background only hypothesis
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• Dashed: expected p-value for
SM higgs.

• Easier to discover if the Higgs
was heavier
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CLs values for Higgs search

• If CLs(xobs;µ) < α we reject the parameter µ

• Here the level of confidence for SM Higgs with data: CLs(xobs;µ = 1)
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Signal strength

• The band defined by

−2 lnλ(µ) = −2 lnL(µ)/L(µ̂) < 1→ lnL(µ) > logL(µ̂)− 1/2

• Approximately the typical 1σ 68% CL confidence interval
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Summary

• Hypothesis test based on likelihood ratio or profile likelihood ratio (in case of
unknown parameters in the model) are most optimal

• Discovery - want to reject the background only hypothesis

• Limits or confidence intervals - inversion of hypothesis tests, reject the signal
+ background hypothesis
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Backups
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Maximum likelihood fit

logL(θ) = logL(θ̂)︸ ︷︷ ︸
logLmax

+
[ ∂ logL(θ)

∂θk︸ ︷︷ ︸
=0

]
θ=θ̂

(θk − θ̂k) +
1

2
(θi − θ̂i)

[ ∂2 logL(θ)

∂θi∂θj︸ ︷︷ ︸
−V̂−1

ij
[θ̂]

]
θ=θ̂

(θj − θ̂j) + . . .

• For sufficiently large n, the likelihood function is a paraboloid

• Several methods exploiting the shape to determine fit uncertainties

– RFC method - inverse of covariance matrix defined by second derivatives
of the likelihood (HESSE)

– graphical method MINOS - graphical method (MINOS)

logL(θ) ≈ logLmax −
1

2

(θ − θ̂)2

σ̂2
θ̂

logL(θ̂ ± σ̂θ̂) = logLmax −
1

2

• MC pseudo-experiments for the case of small number of events
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Distribution of qµ
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