CP Violation \& Belle

Daniel Červenkov
APRIL 19, 2017
Výjezdní seminář MfF

Outline

- Symmetries
- CP Violation
- Belle \& Belle II

Disclaimer: This presentation was not intended to be read separately and by itself won't make much sense.

SYMMETRIES

Parity and Charge Symmetry

$$
\widehat{\mathrm{P}}:\left(\begin{array}{l}
t \\
x \\
y \\
z
\end{array}\right) \rightarrow\left(\begin{array}{c}
t \\
-x \\
-y \\
-z
\end{array}\right)
$$

Parity and Charge Symmetry

$$
\widehat{\mathrm{P}}:\left(\begin{array}{l}
t \\
x \\
y \\
z
\end{array}\right) \rightarrow\left(\begin{array}{c}
t \\
-x \\
-y \\
-z
\end{array}\right)
$$

$$
\widehat{\mathrm{C}}: e^{-} \rightarrow e^{+}
$$

Parity and Charge Symmetry

$$
\widehat{P}:\left(\begin{array}{l}
t \\
x \\
y \\
z
\end{array}\right) \rightarrow\left(\begin{array}{c}
t \\
-x \\
-y \\
-z
\end{array}\right)
$$

$$
\widehat{\mathrm{C}}: e^{-} \rightarrow e^{+}
$$

CP VIOLATION DISCOVERY

$$
K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \quad C P(-1) \rightarrow C P(+1)
$$

Fig. I. Plan view of the apparatus as located at the A. G. S.

FIG. 3. Angular distribution in three mass ranges for events with $\cos \theta>0.9995$.

Branching ratio for this CP violating mode: $\epsilon \cong 2.3 \times 10^{-3}$
Cronin\&Fitch, 1964, Nobel Prize 1980

CP VIOLATION EN MASSE

Charged Current

$$
\mathcal{L}_{C C} \propto \bar{U} \gamma^{\mu} \frac{1-\gamma^{5}}{2} d W_{\mu}^{+}+\text {c.c. }
$$

Charged Current

$$
\mathcal{L}_{C C} \propto \bar{u} \gamma^{\mu} \frac{1-\gamma^{5}}{2}\left(V_{u d} d+V_{u s} s\right) W_{\mu}^{+}+\text {c.c. }
$$

Charged Current

$$
\begin{aligned}
\mathcal{L}_{C C} & \propto \bar{u} \gamma^{\mu} \frac{1-\gamma^{5}}{2}\left(V_{u d} d+V_{u s} s\right) W_{\mu}^{+} \\
& +\bar{c} \gamma^{\mu} \frac{1-\gamma^{5}}{2}\left(V_{c d} d+V_{c S} s\right) W_{\mu}^{+}+c . c .= \\
& =(\bar{u} \bar{c}) \gamma^{\mu} \frac{1-\gamma^{5}}{2}\left(\begin{array}{ll}
V_{u d} & V_{u s} \\
V_{c d} & V_{c s}
\end{array}\right)\binom{d}{s} W_{\mu}^{+}+c . c .
\end{aligned}
$$

$$
\left(\begin{array}{ll}
V_{u d} & V_{u s} \\
V_{c d} & V_{c s}
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
V_{u d} & V_{u s} \\
V_{c d} & V_{c s}
\end{array}\right)
$$

Counting parameters:

- 4 complex pars. = 8 real ones

$$
\left(\begin{array}{ll}
V_{u d} & V_{u s} \\
V_{c d} & V_{c s}
\end{array}\right)
$$

Counting parameters:

- 4 complex pars. $=8$ real ones
- Has to be unitary $\mathrm{VV}^{\dagger}=\mathbb{1} \Longrightarrow-4$ pars.

$$
\left(\begin{array}{ll}
V_{u d} & V_{u s} \\
V_{c d} & V_{c s}
\end{array}\right)
$$

Counting parameters:

- 4 complex pars. $=8$ real ones
- Has to be unitary $\mathrm{VV}^{\dagger}=\mathbb{1} \Longrightarrow-4$ pars.
- A phase can be absorbed into each of the quark fields, but the overall phase is irrelevant $\Longrightarrow-3$ pars.

$$
\left(\begin{array}{ll}
V_{u d} & V_{u s} \\
V_{c d} & V_{c s}
\end{array}\right)
$$

Counting parameters:

- 4 complex pars. $=8$ real ones
- Has to be unitary $\mathrm{VV}^{\dagger}=\mathbb{1} \Longrightarrow-4$ pars.
- A phase can be absorbed into each of the quark fields, but the overall phase is irrelevant $\Longrightarrow-3$ pars.
- We have just one parameter and we can choose the relative phases!

$$
\left(\begin{array}{rr}
\cos \theta_{c} & \sin \theta_{c} \\
-\sin \theta_{c} & \cos \theta_{c}
\end{array}\right)
$$

Charge Conjugation

To get the term relevant for anti-quarks in the same vertex, we need the c.c. part:

$$
\begin{aligned}
& (\bar{d} \bar{s}) \gamma^{\mu} \frac{1-\gamma^{5}}{2}\left(\begin{array}{rr}
\cos \theta_{c} & \sin \theta_{c} \\
-\sin \theta_{c} & \cos \theta_{c}
\end{array}\right)^{\dagger}\binom{u}{c} W_{\mu}^{-}= \\
= & (\bar{d} \bar{s}) \gamma^{\mu} \frac{1-\gamma^{5}}{2}\left(\begin{array}{rr}
\cos \theta_{c} & -\sin \theta_{c} \\
\sin \theta_{c} & \cos \theta_{c}
\end{array}\right)^{*}\binom{u}{c} W_{\mu}^{-}
\end{aligned}
$$

Charge Conjugation

To get the term relevant for anti-quarks in the same vertex, we need the c.c. part:

$$
\begin{aligned}
& (\bar{d} \bar{s}) \gamma^{\mu} \frac{1-\gamma^{5}}{2}\left(\begin{array}{rr}
\cos \theta_{c} & \sin \theta_{c} \\
-\sin \theta_{c} & \cos \theta_{c}
\end{array}\right)^{\dagger}\binom{u}{c} W_{\mu}^{-}= \\
= & (\bar{d} \bar{s}) \gamma^{\mu} \frac{1-\gamma^{5}}{2}\left(\begin{array}{rr}
\cos \theta_{c} & -\sin \theta_{c} \\
\sin \theta_{c} & \cos \theta_{c}
\end{array}\right)\binom{u}{c} W_{\mu}^{-}
\end{aligned}
$$

Charge Conjugation

To get the term relevant for anti-quarks in the same vertex, we need the c.c. part:

$$
\begin{aligned}
& (\bar{d} \bar{s}) \gamma^{\mu} \frac{1-\gamma^{5}}{2}\left(\begin{array}{rr}
\cos \theta_{c} & \sin \theta_{c} \\
-\sin \theta_{c} & \cos \theta_{c}
\end{array}\right)^{\dagger}\binom{u}{c} W_{\mu}^{-}= \\
= & (\bar{d} \bar{s}) \gamma^{\mu} \frac{1-\gamma^{5}}{2}\left(\begin{array}{rr}
\cos \theta_{c} & -\sin \theta_{c} \\
\sin \theta_{c} & \cos \theta_{c}
\end{array}\right)\binom{u}{c} W_{\mu}^{-}
\end{aligned}
$$

The part that is relevant for, e.g., the u quark is:

$$
\left(\cos \theta_{C} \bar{d}+\sin \theta_{C} \bar{s}\right) \gamma^{\mu} \frac{1-\gamma^{5}}{2} u W_{\mu}^{-}
$$

QUARKS AND ANTI-QUARKS

$$
\bar{u} \gamma^{\mu} \frac{1-\gamma^{5}}{2}\left(\cos \theta_{C} d+\sin \theta_{C} s\right) W_{\mu}^{+}
$$

$\left(\cos \theta_{C} \bar{d}+\sin \theta_{C} \bar{S}\right) \gamma^{\mu} \frac{1-\gamma^{5}}{2} u W_{\mu}^{-}$

CABIBBO-KOBAYASHI-MASKAWA MATRIX

Kobayashi and Maskawa: no CP violation possible with two quark generations, but natural with three

$$
V_{C K M}=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Counting parameters:

- 9 complex pars. = 18 real ones

CABIBBO-KOBAYASHI-MASKAWA MATRIX

Kobayashi and Maskawa: no CP violation possible with two quark generations, but natural with three

$$
V_{C K M}=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Counting parameters:

- 9 complex pars. = 18 real ones
- Has to be unitary $V_{C K M} V_{C K M}^{\dagger}=\mathbb{1} \Longrightarrow-9$ pars.

CABIBBO-KOBAYASHI-MASKAWA MATRIX

Kobayashi and Maskawa: no CP violation possible with two quark generations, but natural with three

$$
V_{C K M}=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Counting parameters:

- 9 complex pars. = 18 real ones
- Has to be unitary $V_{C K M} V_{C K M}^{\dagger}=\mathbb{1} \Longrightarrow-9$ pars.
- A phase can be absorbed into each of the quark fields, but the overall phase is irrelevant $\Longrightarrow-5$ pars.

CABIBBO-KOBAYASHI-MASKAWA MATRIX

Kobayashi and Maskawa: no CP violation possible with two quark generations, but natural with three

$$
V_{C K M}=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Counting parameters:

- 9 complex pars. = 18 real ones
- Has to be unitary $V_{C K M} V_{C K M}^{\dagger}=\mathbb{1} \Longrightarrow-9$ pars.
- A phase can be absorbed into each of the quark fields, but the overall phase is irrelevant $\Longrightarrow-5$ pars.
- We have 4 parameters!

To Be or Not To Be (Real)

$$
\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Can we take $V_{\text {CKM }}$ real ?

- Real unitary matrix = special orthogonal matrix
- $V \in S O(3) \Longrightarrow$ only 3 parameters (rotations in 3D, Euler angles)
- 1 irreducible complex phase

Charge Conjugation Reloaded

$V_{\text {CKM }}$ complex \Longrightarrow Nature treats matter and anti-matter differently

CKM MATRIX

$$
\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

CKM Matrix:

- Encodes quark mixing amplitudes
- Encodes CP violation
- Is almost diagonal

Unitarity Triangle

$$
\begin{gathered}
\left(\begin{array}{ccc}
V_{u d}^{*} & V_{c d}^{*} & V_{t d}^{*} \\
V_{u s}^{*} & V_{c s}^{*} & V_{t s}^{*} \\
V_{u b}^{*} & V_{c b}^{*} & V_{t b}^{*}
\end{array}\right)\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
\end{gathered}
$$

- 2 sides and 3 angles \Rightarrow heavily overdetermined.
- Are angles consistent with sides?
- Are angles from loop and tree decays consistent?

UNITARITY TRIANGLE FIT

KEKB/BELLE

$\cdot \sqrt{\mathrm{s}}=10.58 \mathrm{GeV}=M[\Upsilon(4 \mathrm{~S})] \Rightarrow$ B-factory

- Asymmetric $e^{+} e^{-}$collider \Rightarrow enables B decay time measurement
- World's highest luminosity machine

$$
\mathcal{L}=2.11 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

BELLE II, LAST WEEK...

Superkekb/Belle il Motivation

So far no New Physics (NP) from LHC experiments. There is a possibility that NP scale is $>\sim 10 \mathrm{TeV}$; out of reach of LHC.

B-factories can search for new particles in a different way:

Superkekb/Belle il Motivation

The effect of NP in indirect searches is expected to be tiny and has not been observed so far.
Only several "anomalous"measurements:

- Unexpectedly large $D^{0}-\overline{D^{0}}$ mixing (although SM has large uncertainties)
- $\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu\right)(\sim 4 \sigma$ discrepancy $)$

Need more precise measurements with more statistics \Longrightarrow Belle II

- $40 \times$ higher luminosity
- Improved particle ID detectors
- Improved vertex detectors

BeLle II Vertex Detector

Layers 1-2: Pixel Detector

 Layers 3-6: Strip DetectorCloser to IP
"VXD-only" tracking

Belle II Collaboration

23 countries, 98 institutions, ~ 700 physicists
7 Czech members (Charles University in Prague, Faculty of Mathematics and Physics), 3 faculty, 4 students. Working mostly on the pixel detector and tracking (as well as some analyses on the Belle data sample).

Prague Belle/Belle II Team

- Zdeněk Doležal
- Peter Kodyš
- Peter Kvasnička
- Tadeáš Bilka
- Daniel Červenkov
- Jakub Kandra
- Michal Krištof

Anyone interested in a Belle/Belle
II related

- bachelor
- master
- doctoral
- other
work should contact Z. Doležal.

THANK YOU!

