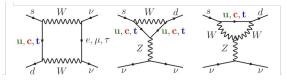
NA62 experiment

Michal Zamkovsky

Charles University in Prague

April 19, 2017


3

・ロト ・聞 ト ・ ヨト ・ ヨトー

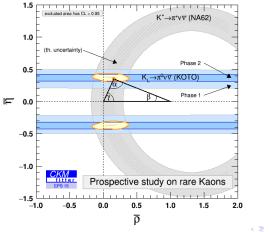
- $\bullet\,$ Theoretical motivation for $K^+ \to \pi^+ \nu \bar{\nu}$
- NA62 setup
- Event selection and analysis strategy
- Analysis status/prospects
- Heavy neutral lepton search with 2007 and 2015 data
- Future prospects of NA62 experiment
- Summary

<ロ> (日) (日) (日) (日) (日)

• FCNC loop process: s \rightarrow d coupling and highest CKM suppression

- Very clean theoretically: Short distance contribution and no hadronic uncertainties Hadronic matrix element extracted from well-known decay $K^+ \rightarrow e^+ \nu \pi^0$
- SM predictions: [Buras et al. arXiv:1503.02693], [Brod, Gorbahn, Stamou, Phys. Rev.D 83, 034030 (2011)]

$$BR(\mathbf{K}^{+} \to \pi^{+} \nu \bar{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2[\mathsf{U+FFD]}]}\right)^{0.74} = (8.4 \pm 1.0) \cdot 10^{-11}$$
$$BR(\mathbf{K}_{\mathrm{L}}^{0} \to \pi^{0} \nu \bar{\nu}) = (3.36 \pm 0.05) \cdot 10^{-11} \left(\frac{|V_{ub}|}{0.00388}\right)^{2} \left(\frac{|V_{cb}|}{0.0407}\right)^{2} \left(\frac{\sin \gamma}{\sin 73.2}\right)^{2} = (3.4 \pm 0.6) \cdot 10^{-11}$$

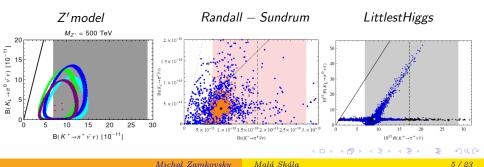

• Experiments:

Testing the Standard Model

• BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$) with 10% uncertainties allows to determine $|V_{td}|$ at 9% [Buras 0405132]

Michal Zamkovsky

• With BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$), BR(K⁰_L $\rightarrow \pi^0 \nu \bar{\nu}$) the CKM unitarity triangle can be built independently from B observables:


Malá Skála

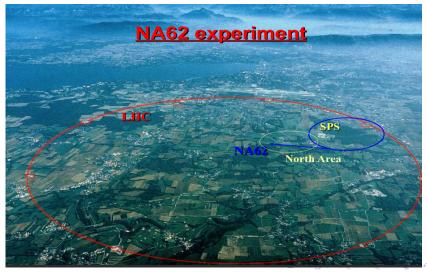
Going Beyond the Standard Model

- Simplified Z, Z' models [Buras, Buttazzo, Knegjens, arXiv:1507.08672 (2015)]
- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, arXiv:1507.06316 (2015)]
- Custodial Randall-Sundrum [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- MSSM non-MFV [Blazek, Matak Int.J.Mod.Phys.A29 (2014) 1450162;

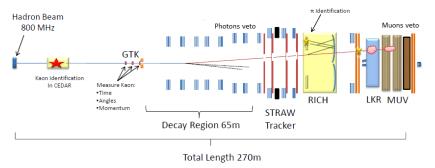
Tanimoto, Yamamoto PTEP (2015) 053B07; Isidori et al. JHEP 0608 (2006) 064]

 Constraints from existing measurements (correlations model dependent): Kaon mixing and CPV, CKM fit, K,B rare meson decays, NP limits from direct searches

Physics program of NA62 experiment


• Main goal:

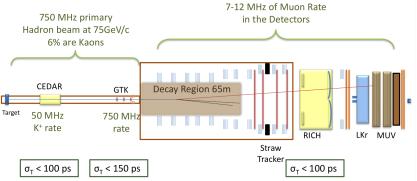
- Collect O(100) signal events in 2 years $\Rightarrow 10^{13}$ Kaon decays
- Measure ${\sf BR}({
 m K}^+ o \pi^+
 u ar
 u)$ with 10% precision
- Signal acceptance $\sim 10\%$
- Systematics: <10% precision background measurement
- \bullet > 10¹² background rejection (< 20% background)
- Further goals:
 - Measure $|V_{td}|$ with ${\sim}10\%$ accuracy
 - Probe several NP scenarios in ${\rm K}^+ \to \pi^+ \nu \bar{\nu}$
 - Probe NP in similar processes (e.g. ${
 m K}^+ o \pi^+ X$)
- Beyond the baseline:
 - LFV/LNV decays with 3 tracks in the final state
 - Heavy neutrino searches
 - π^0 decays
 - Dark photon searches


・ロト ・四ト ・ヨト ・ヨト

Experiment NA62 at CERN

• SPS experiment NA62 - North Area experiment, Prèvessin • Extracting 74 GeV/c K⁺ from 400 GeV/c proton beam

 $\bullet~\sim 11 \text{MHz}$ of $\mathrm{K^+}$ decays

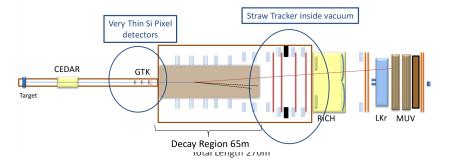


- High Intensity and fast Timing
- Low Mass Tracking
- Hermetic Vetoing for Photons and Muons
- Particle ID

(日) (同) (三) (三)

Detector layout

 $\bullet\,\sim 11 \textrm{MHz}$ of $\mathrm{K^{+}}$ decays

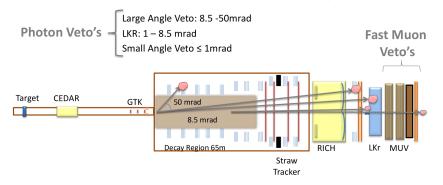

4.5 10^{12} K⁺ decays/ year in fiducial region

- High Intensity and fast Timing
- Low Mass Tracking
- Hermetic Vetoing for Photons and Muons
- Particle ID

臣

イロト イポト イヨト イヨト

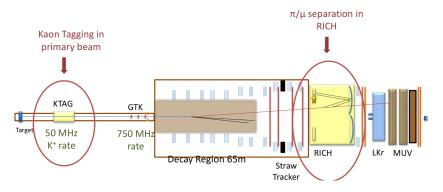
 $\bullet~\sim 11 \text{MHz}$ of $\mathrm{K^+}$ decays



- High Intensity and fast Timing
- Low Mass Tracking
- Hermetic Vetoing for Photons and Muons
- Particle ID

イロト イヨト イヨト イヨト

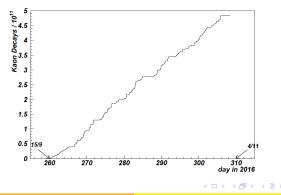
臣


• ~ 11 MHz of $\mathrm{K^{+}}$ decays

- High Intensity and fast Timing
- Low Mass Tracking
- Hermetic Vetoing for Photons and Muons

- 4 同 6 4 日 6 4 日 6

• ~ 11 MHz of K^+ decays


- High Intensity and fast Timing
- Low Mass Tracking
- Hermetic Vetoing for Photons and Muons
- Particle ID

イロト イポト イヨト イヨト

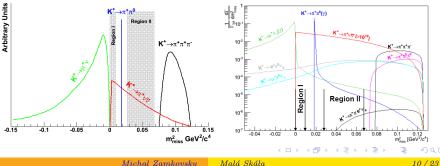
臣

Experimental status

- NA62 took data in 2014, 2015 (only low intensity) and 2016
- Beam commissioned up to nominal intensity
- All subsystems installed and commissioned
- L0, L1 triggers commissioned
- $\sim 5 \times 10^{11}$ kaon decays recorded in 2016 $= 10^3~\text{TByte}$ of data

Scheme for $K^+ \to \pi^+ \nu \bar{\nu}$

• Reconstruction based on kinematics:


P_K

$$m_{miss}^2 = (P_K - P_\pi)^2 pprox m_k^2 \left(1 - rac{|P_\pi|}{|P_K|}
ight) + m_\pi^2 \left(1 - rac{|P_K|}{|P_\pi|}
ight) - |P_K||P_\pi|artheta_{\pi K}^2$$

 $\theta_{\pi \mathbf{K}}$

P_v **P**.,

• 92% of Kaon decays are kinematically constrained

Michal Zamkovsky

Analysis strategy and background sources

- Key analysis requirements:
 - 2 signal regions in m_{miss}^2
 - $15 < P_{\pi^+} < 35~{
 m GeV}/c$
 - 65 m long decay region
- $\bullet~$ Expected 45 SM signal events/year with \leq 10 background
- Main background sources:

Decay mode	event/year
$K^+ \rightarrow \pi^+ \nu \bar{\nu} \mathrm{SM}$	45
Total Background	10
$\mathrm{K^+} \to \pi^+\pi^0$	5
$K^+ \rightarrow \mu^+ \nu$	1
$\mathrm{K}^+ \to \pi^+ \pi^+ \pi^-$	< 1
$\mathrm{K^+} ightarrow \pi^+\pi^- e^+ u$ + other 3 track decays	< 1
${ m K}^+ ightarrow \pi^+ \pi^0 \gamma'^B$	1.5
$\mathrm{K}^+ \to \mu^+ \nu \gamma^{IB}$	0.5
${ m K}^+ ightarrow \pi^0 e^+ (\mu^+) u + { m others}$	negligible

- Other possible background:
 - Accidental tracks in time with kaon tracks
 - Beam-gas and upstream interactions
 < □ > < ₫ > < ≣ > < ≡ >

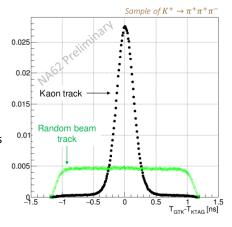
Signal topology & kaon ID: K/π matching

One-track selection

- Single downstream track topology
- Beam track matching the downstream track
- Beam track matching a K signal in Kaon ID
- Downstream track matching energy in calorimeters

```
\pi^+ \ {\rm timing}
```

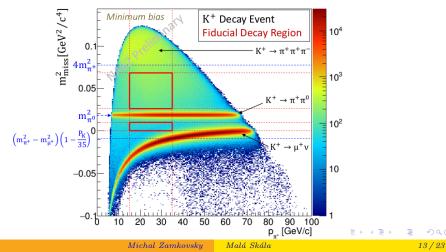
```
• \sigma(T_{CHOD}) \sim 250 ps, \sigma(T_{RICH}) \sim 150 ps
K<sup>+</sup> timing
```

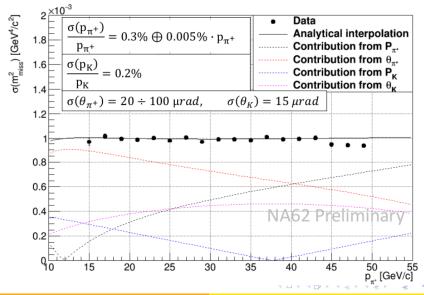

• $\sigma(T_{KTAG})$ \sim 80 ps, $\sigma(T_{GTK})$ \sim 100 ps

Spatial matching

σ(CDA) ~1.5 mm

Mis-tagging probability

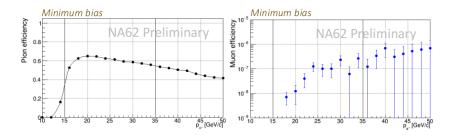

 $\bullet~\sim\!\!1.7\%$ [40% nominal intensity, 75% eff]

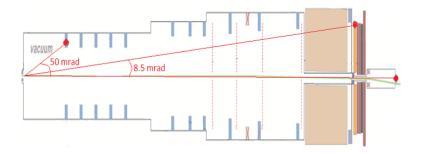


イロト イヨト イヨト イヨト

Signal Regions Definition

- Technique: Si-pixel tracker; Straw tube tracker in vacuum
- $\bullet~\mbox{Goal:}~O(10^4 \div 10^5)$ suppression factor of the main kaon decay modes
- $P_{\pi^+} < 35 \text{ GeV}/c$: best $\mathrm{K}^+ \to \mu^+ \nu$ suppression
- $\bullet\,$ Kinematics studied on ${\rm K}^+ \to \pi^+ \pi^0$ selected using LKr calorimeter




 m_{miss}^2 Resolution

Particle ID

- Technique: RICH and calorimeters
- Goal: O(10⁷) μ/π separation to suppress mainly $K^+ \rightarrow \mu^+ \nu$ 15 < P_{π^+} < 35 GeV/*c*: best μ/π separation in RICH
- Pure samples of pions and muons selected using kinematics
- RICH: $\eta(\mu) \div \varepsilon(\pi) \sim 10^{-2} \div 80\%$
- Calorimeters: $\eta(\mu) \div \varepsilon(\pi) \sim 10^{-5} \div 80\%$

イロト イヨト イヨト イヨト

- Technique: EM calorimeters exploiting correlations between γ s' from π^0
- Goal: O(10⁸) rejection π^0 from ${
 m K}^+
 ightarrow \pi^+ \pi^0$
- $P_{\pi^+} < 35 ~{
 m GeV}/c \Rightarrow E_{\pi^0} > 40 {
 m GeV}$
- $\bullet\,$ Measured on data using ${\rm K}^+ \to \pi^+ \pi^0$ selected kinematically

•
$$\varepsilon_{\pi^0} = (1.2 \pm 0.2) \times 10^{-7}$$

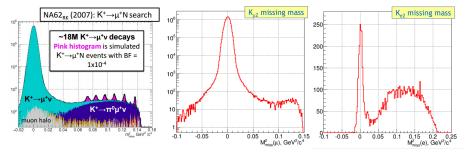
Preliminary result

- N(K decays): $\sim 2.3 \times 10^{10}$
- N(expected $K^+ \rightarrow \pi^+ \nu \bar{\nu}$): ≈ 0.064
- N(normalization): 3.3×10^8
- Acceptance normalization ~ 0.07
- Acceptance signal ~ 0.033
- Measured background:

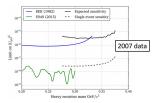
Process	Expected events	Branching ratio
$K^+ \to \pi^+ \pi^0$	0.024	0.2066
$\mathrm{K}^+ \to \mu^+ \nu$	0.011	0.6356
${\rm K}^+ \to \pi^+ \pi^+ \pi^-$	0.017	0.0558
Early decays	< 0.005	

イロト 人間ト イヨト イヨト

NP searches in $K^+ \rightarrow \pi \mu \mu$ decays

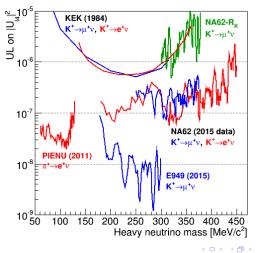

- Search for Majorana neutrinos in LNV $K^+ \rightarrow \pi^- \mu^+ \mu^+$ decays [Asaka-Shaposhnikov model (ν MSM) [PLB 620 (2005) 17]]
 - DM + Baryon Asymmetry + low mass of SM ν can be explained by adding three sterile Majorana neutrinos to the SM
 - Current limits set by NA48/2 [submitted to Physics Letters B; arXiv:1612.04723]

$$BR(K^{\pm} \to \pi^{\mp} \mu^{\pm} \mu^{\pm}) < 8.6 \times 10^{-11}$$
 @ 90% CL


- Search for resonances (N, X, etc.) in the opposite-sign muons sample [Shaposhnikov-Tkachev model [PLB 639 (2006) 414]]
 - νMSM + real scalar field (inflaton X) with scale invariant couplings
 - Explains universe homogeneity and isotropy on large scales/structures on smaller scales
 - Current limits:
 - HN peak search in $K^+ \rightarrow \mu^+(\pi^+\mu^-)$ Limits set at $\sim 10^{-9}$ (90% CL) by NA48/2
 - Inflatons peak search in ${
 m K}^+ o \pi^+(\mu^-\mu^+)$
- $\bullet\,$ Can also search for HNL in ${\rm K}^+ \to {\it I}^+ {\rm N}$ with undecayed N
 - $K^+ \to {\it I}^+ {\rm N}$ events would appear as peaks in the $K^+ \to {\it I}^+ \nu ~m^2_{miss}$
 - Searches are model independent

Heavy neutral leptons in $K^+ \rightarrow I^+ N$

- The mass resolution at NA62 is better by a factor \sim 2 compared to NA48/2
- NA62 can potentially improve by two orders of magnitude the NA48/2 results


- Current experimental status: most stringent constraints from kaon measurements
- Expected SES with 2015 NA62 data at the level of 10^{-8} (similar for $K \rightarrow eN$ and $K \rightarrow \mu N$)
- Analysis underway with NA62 data from 2015.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Heavy neutral leptons in $K^+ \rightarrow I^+ N$

- \bullet Background estimated by fits with $3^{\rm rd}/4^{\rm th}$ order polynomials
- Possible to reach $\sim 10^{-7}$ limits for both $|U_{e4}|^2$ and $|U_{\mu4}|^2$, improving on the world data \rightarrow prospects only

NA62 further physics programme

- Run 2 (2015-2018): focused on the "golden mode" $K^+ \to \pi^+ \nu \bar{\nu}.$
 - Trigger bandwidth for other physics is limited.
 - Several measurements at nominal SES $\sim 10^{-12}$: $K^+ \rightarrow \pi^+ A'$, $\pi^0 \rightarrow \nu \nu$.
 - A few measurements do not require extreme SES: ${\rm K}^+ \rightarrow {\it I}^+ \nu_{\it H},\,...$
 - In general, limited sensitivities for most rare/forbidden decays (SES $\sim 10^{-10}$ to $\sim 10^{-11}$, similar to NA48/2 and BNL-E865).
 - A proof of principle for a broad rare/forbidden decay programme.
- Run 3 (2021-2024): programme is under discussion.

[Presented at the "Physics Beyond Colliders" workshop, CERN, Sep 2016]

- Existing apparatus, different trigger logic: no capital investment.
- Rare/forbidden K^+ and π^0 decays at SES $\sim 10^{-12}$:
 - K⁺ physics: K⁺ $\rightarrow \pi^+ l^+ l^-$, K⁺ $\rightarrow \pi^+ \gamma l^+ l^-$, $K^+ \rightarrow l^+ \nu \gamma K^+ \rightarrow \pi^+ \gamma \gamma \ell^-$,
 - $\begin{array}{c} \mathrm{K}^+ \to l^+ \nu \gamma, \, \mathrm{K}^+ \to \pi^+ \gamma \gamma, \, \dots \\ \bullet \ \pi^0 \ \mathrm{physics:} \ \pi^0 \to e^+ e^-, \, \pi^0 \to e^+ e^- e^+ e^-, \, \pi^0 \to 3\gamma, \, \pi^0 \to 4\gamma, \, \dots \end{array}$
 - Searches for LFV/LNV: $K^+ \rightarrow \pi^- l^+ l^+$, $K^+ \rightarrow \pi^+ \mu e$, $\pi^0 \rightarrow \mu e$.
- Dump mode: hidden sector searches (long-lived HNL, DP, ALP).
- Possibly further ${\rm K}^+ o \pi^+ \nu \bar{\nu}$ data collection.
- Possibly K_L rare decays (SES~ 10^{-11}), including $K_L \rightarrow \pi^0 l^+ l^-$ [CPV].

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

- Reported status of ${\rm K}^+ \to \pi^+ \nu \bar{\nu}$ analysis
 - So far reconstructed $\sim 2.3 \times 10^{10}$ (5% of 2016 statistics)
 - No events found in the signal region
 - Single event sensitivity below 10⁻⁹
 - Need of improvement in kinematic tails suppression and muon rejection
- Reported progress in the HNL searches
 - Draft in preparation for 2007 data (improved KEK limit above 320 ${\rm MeV}/c$ in the muon mode)
 - Possible improvement of current best results from NA48/2 experiment by two orders of magnitude with new data
 - Analysis underway with NA62 data from 2015.

・ロト ・聞ト ・ヨト ・ヨト

Further NA62 physics programme

Decay	Physics	Present limit (90% C.L.) / Result	NA62
$\pi^+\mu^+e^-$	LFV	1.3×10^{-11}	$0.7 imes 10^{-12}$
$\pi^+\mu^-e^+$	LFV	5.2×10^{-10}	0.7×10^{-12}
$\pi^-\mu^+e^+$	LNV	5.0×10^{-10}	0.7×10^{-12}
$\pi^- e^+ e^+$	LNV	6.4×10^{-10}	2×10^{-12}
$\pi^-\mu^+\mu^+$	LNV	1.1×10^{-9}	$0.4 imes 10^{-12}$
$\mu^- \nu e^+ e^+$	LNV/LFV	2.0×10^{-8}	4×10^{-12}
$e^- \nu \mu^+ \mu^+$	LNV	No data	10^{-12}
$\pi^+ X^0$	New Particle	$5.9 \times 10^{-11} m_{X^0} = 0$	10^{-12}
$\pi^+\chi\chi$	New Particle	_	10 ⁻¹²
$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10 ⁻¹¹
$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	3.0×10^{-6}	10 ⁻¹¹
$\pi^+\gamma$	Angular Mom.	2.3×10^{-9}	10^{-12}
$\mu^+ \nu_h, \nu_h \rightarrow \nu \gamma$	Heavy neutrino	Limits up to $m_{\nu_h} = 350 \ MeV$	
R _K	LU	$(2.488 \pm 0.010) \times 10^{-5}$	>×2 better
$\pi^+\gamma\gamma$	χPT	< 500 events	10 ⁵ events
$\pi^0\pi^0e^+\nu$	χPT	66000 events	O(10 ⁶)
$\pi^0\pi^0\mu^+\nu$	χPT	-	O(10 ⁵)

3

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶