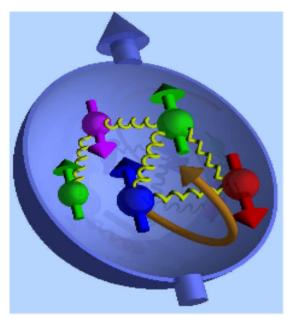
Nucleon spin structure at COMPASS

Michael Pešek

Charles University in Prague & Universita degli studi di Torino & INFN Torino



Malá Skála 19.04.2017

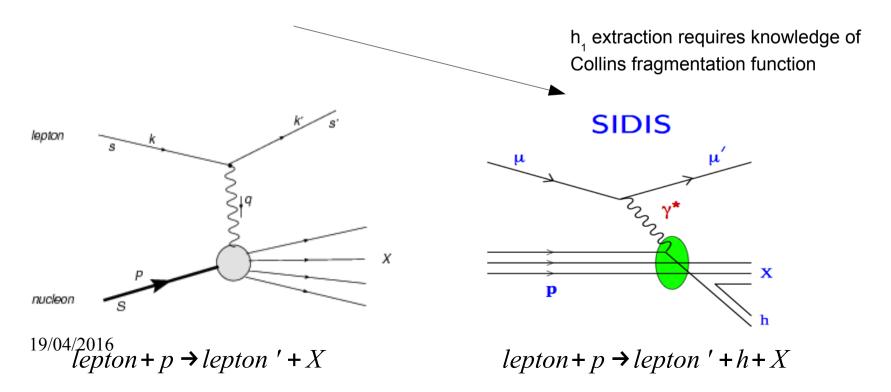
Outline

- Nucleon spin structure
- SIDIS & Drell-Yan processes
- COMPASS experiment at CERN
- COMPASS SIDIS results
- J/Ψ production in SIDIS and DY
- Conclusion

Nucleon spin structure

- Proton spin $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_{q,g}$
- Naive parton model expects ΔΣ=1
- EMC(1988) $\Delta\Sigma$ compatible with zero
- Precision data today ΔΣ~0.3
- Recently ΔG non-zero, positive at x_g range accessed (RHIC, COMPASS) $\Delta G = 0.2^{+0.06}_{-0.07}$

de Florian et al. Phys. Rev. Lett. 113 (2014) no.1, 012001


L_{q,g} still unexplored, accessible e.g. via Generalized PDFs
 (DVCS & DVMP & SIDIS at COMPASS, JLAB, future EIC)

"You think you understand something? Now add spin..." R. Jaffe

Nucleon (spin) structure

At leading-twist (LO), neglecting parton transverse momentum(collinear aproximation):

- 3 funtions f₁(number density), g₁(helicity), h₁(transversity)
- f₁, g₁ well measured in (inclusive) Deep Inelastic Scattering
 (EMC, NMC, Hermes, HERA, COMPASS, CLASS)
- h₁ is chiral-odd and cannot be measured in inclusive DIS (Semi-inclusive reaction needed)

Nucleon structure continued

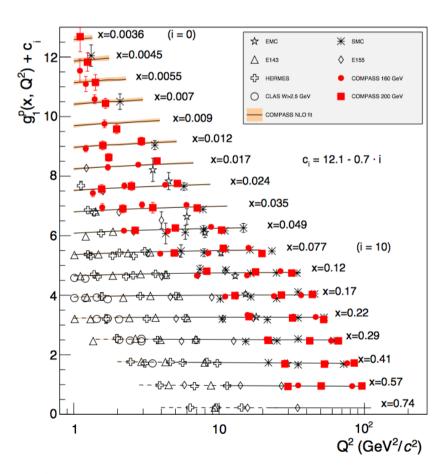
$$s \equiv (k+P)^2 = M^2 + 2k \cdot P = M(2E_{lab} + M)$$

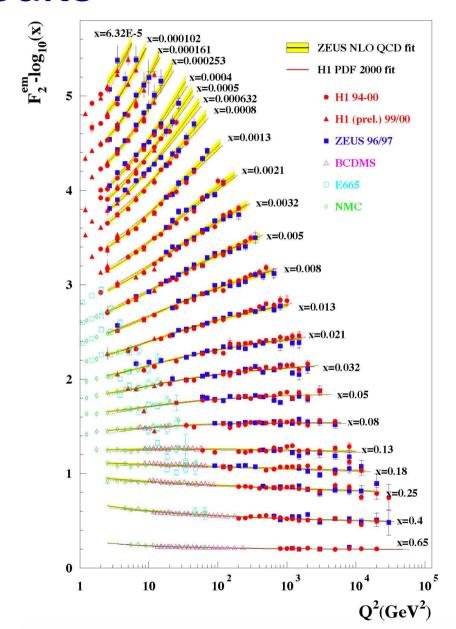
$$Q^{2} = -q^{2} = -(k - k')^{2} = 2k \cdot k' = 4EE' \sin^{2}(\theta_{lab}/2)$$

$$y = \frac{q \cdot P}{k \cdot P} = \frac{E_{lab} - E'_{lab}}{E_{lab}} = \frac{v}{E_{lab}}$$

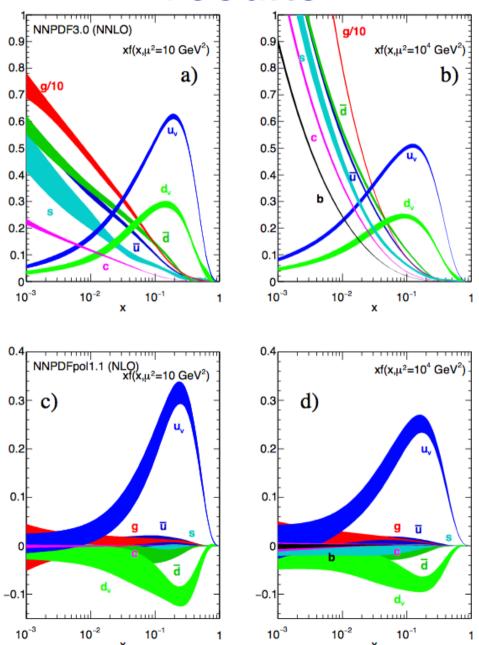
$$x = \frac{Q^{2}}{2P \cdot q} = \frac{Q^{2}}{2Mv}$$

$$W^{2} = (q + P)^{2} = \frac{Q^{2}(1 - x)}{x} + M^{2}.$$


$$\frac{d\sigma}{dxdQ^{2}} = \frac{4\pi\alpha^{2}}{Q^{4}} \left[\left(1 - y - \frac{M^{2}xy}{s} \right) \frac{F_{2}(x, Q^{2})}{x} + y^{2}F_{1}(x, Q^{2}) \right],$$


$$A_1 = \frac{d \, \sigma^{\uparrow \uparrow} - d \, \sigma^{\uparrow \downarrow}}{d \, \sigma^{\uparrow \uparrow} + d \, \sigma^{\uparrow \downarrow}} .$$

$$F_2(x,Q^2) = F_2(x) = x \sum_i e_i^2 f_i(x)$$
.


$$A_1(x) = \frac{(1 - (1 - y)^2)}{(1 + (1 - y)^2)} \frac{x}{F_2(x)} \sum_i e_i^2 \Delta q_i$$

Nucleon structure – experimental results

Nucleon structure – experimental results

Twist-2 TMD PDFs

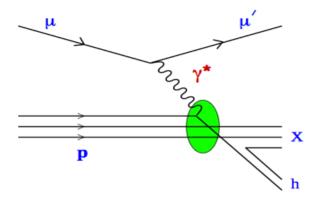
Nucleon Quark	U	L	T
U	$f_I^{\ q}(x, k_T^2)$ Number density		$f_{IT}^{q\perp}(x, \boldsymbol{k}_T^2)$ Sivers
L		$g_I^{\ q}(x, \mathbf{k}_T^2)$ Helicity	$g_{1T}^{\ q\perp}(x, k_T^2)$ Kotzinian- Mulders or Worm-gear T
Т	$h_I^{q\perp}(x, \boldsymbol{k}_T^2)$ Boer-Mulders	$h_{IL}^{\ \ q\perp}(x, \boldsymbol{k}_T^2)$ Worm-gear L	$h_I^{\ q}(x, \boldsymbol{k}_T^2)$ Transversity $h_{IT}^{\ q\perp}(x, \boldsymbol{k}_T^2)$ Pretzelosity

+ two FFs: $D_{1q}^h(z, P_{\perp}^2)$ and $H_{1q}^{\perp h}(z, P_{\perp}^2)$

Beyond collinear approximation if we consider partons transverse momentum \mathbf{k}_{T} (LO QCD parton model with TMD-factorization):

- The nucleon spin-structure can be parametrized by 8 twist-2 TMD PDFs
- They can be accessed by measuring azimuthal asymmetries in DY or SIDIS processes

Complementarity

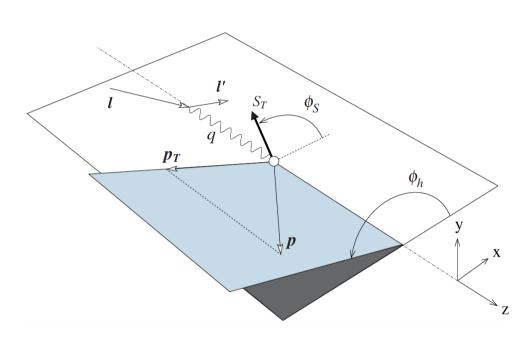

Posibility to test the TMD approach

See Marketa's talk later today

Polarized SIDIS cross-section

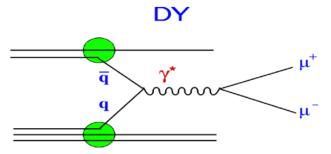
SIDIS

SIDIS involves both Fragmentation Functions and TMD PDFs



$$\frac{d\sigma_{SIDIS}^{LO}}{dxdydzdp_T^2d\varphi_hd\psi} = \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right]$$

$$\times \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{ 1 + \cos 2\phi_h \left(\varepsilon A_{UU}^{\cos 2\phi_h}\right) \right.$$


$$+ S_{T} \begin{bmatrix} \sin(\phi_{h} - \phi_{S}) \left(A_{UT}^{\sin(\phi_{h} - \phi_{S})} \right) \\ + \sin(\phi_{h} + \phi_{S}) \left(\varepsilon A_{UT}^{\sin(\phi_{h} + \phi_{S})} \right) \\ + \sin(3\phi_{h} - \phi_{S}) \left(\varepsilon A_{UT}^{\sin(3\phi_{h} - \phi_{S})} \right) \end{bmatrix}$$

+
$$S_T \lambda \left[\cos \left(\phi_h - \phi_S \right) \left(\sqrt{\left(1 - \varepsilon^2 \right)} A_{LT}^{\cos(\phi_h - \phi_S)} \right) \right]$$

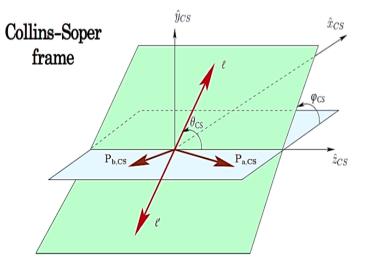
For transversely polarized nucleons

Drell-Yan process

 $hadron1 + hadron2 \rightarrow \mu + \mu + X$

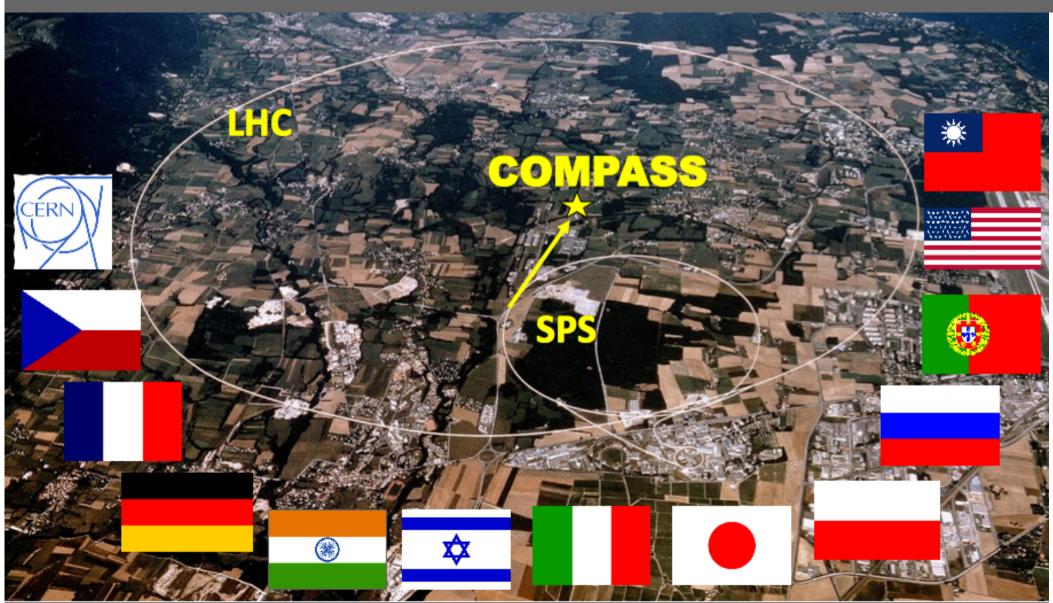
At COMPASS: $\pi^- + p \rightarrow \mu + \mu + X$

- Cross-section involves no FFs, only TMD PDFs (pion/nucleon)
- Dilepton final state
- Gives possibility to study pion or kaon structure


$$s = (P_1 + P_2)^2$$

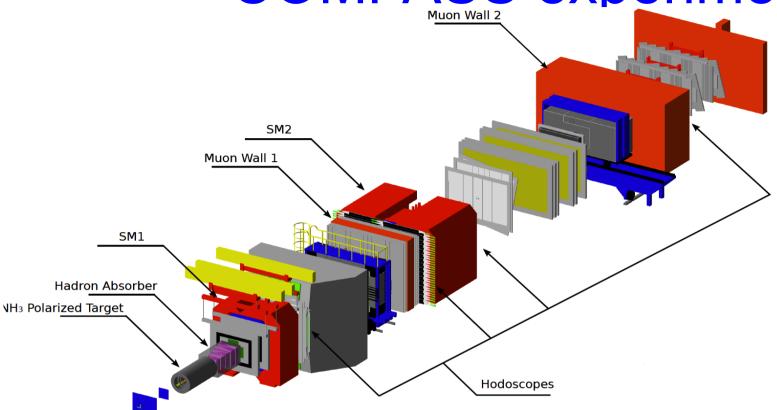
$$x_{1,2} = q^2 / (2q \cdot P_{1,2})$$

$$x_F = x_1 - x_2$$


$$Q^2 = q^2 = M_{\mu\mu}^2 = sx_1 x_2$$

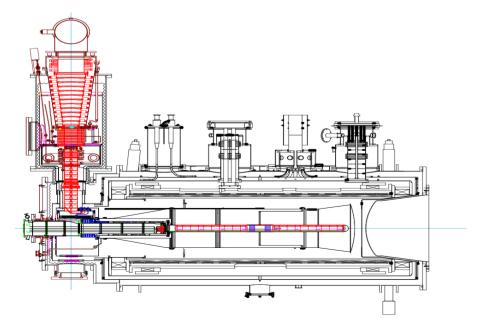
Unpolarized cross-section: $\frac{d\sigma}{d\Omega} \propto \left(1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \varphi_{CS} + \frac{\nu}{2} \sin^2 \theta \cos 2\varphi_{CS}\right)$

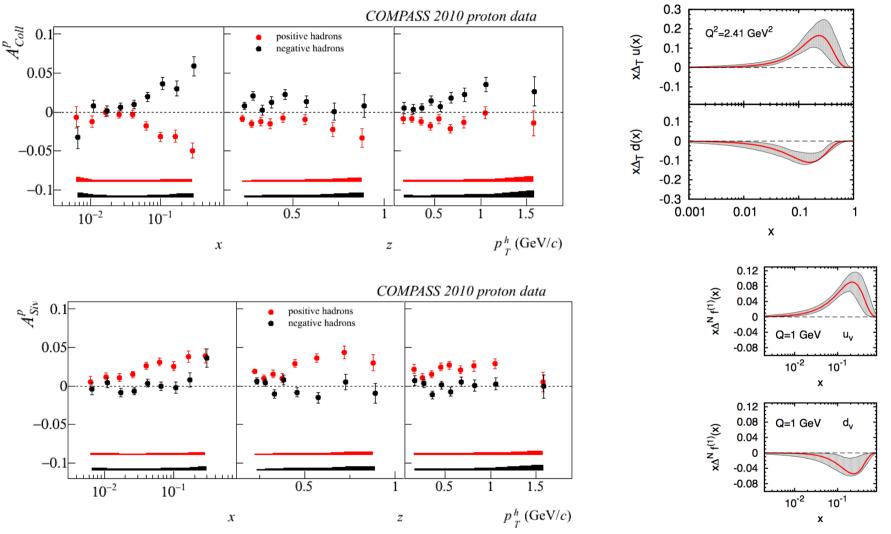
See Marketa's talk later today


COMPASS: Versatile facility to study QCD with hadron (pions, kaon, antiprotons) and muon beams for hadron spectroscopy and hadron structure studies using SIDIS, DY, DVCS, DVMP, ...

History of data taking

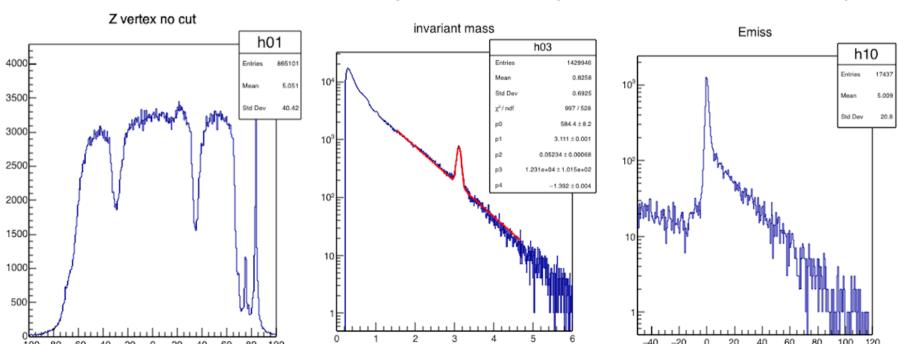
- 1997 COMPASS approved at CERN
- 2001 commissioning run
- 2002-2004 muon run with ⁶LiD (T)
- 2005 Long Shutdown
- 2006 muon run with ⁶LiD (T)
- 2007 muon run (L & T)
- 2008-2009 Hadron spectroscopy
- 2010 Muon run (T)
- 2011 Muon run (L) COMPASS II phase
- 2012 Primakoff & DVCS Pilot
- 2013-2014 Long Shutdown
- 2014-2015 Polarized Drell-Yan
- 2016-2017 DVCS
- 2018 Polarized Drell-Yan
- 2019-2020 Long Shutdown
- 2021-?? Lol & Proposal in preparation

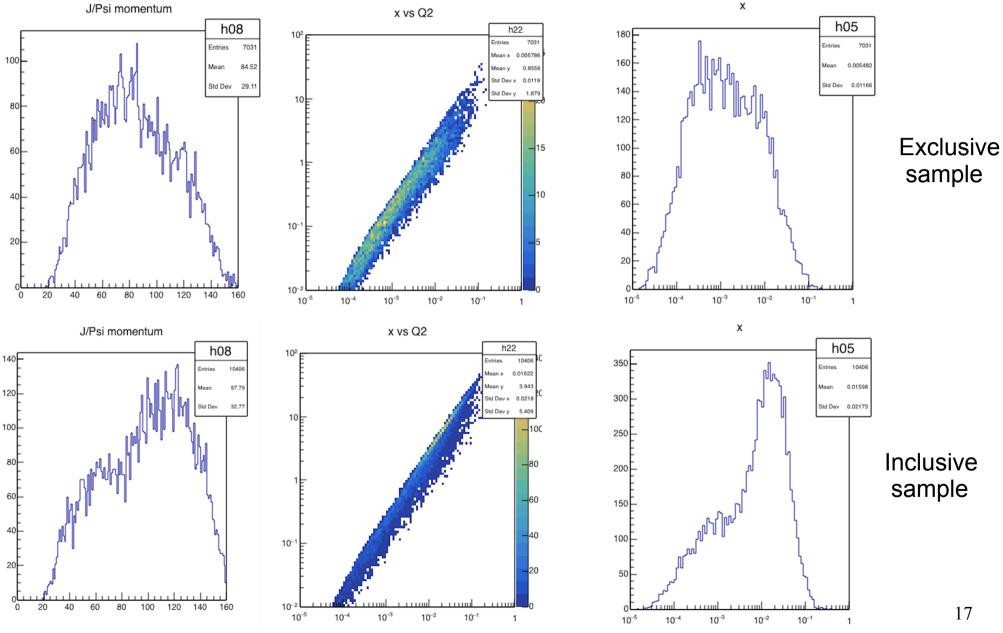

COMPASS experiment


- Two staged magnetic spectrometer
- Calorimeters in both stages
- PID in first stage
- Lepton & hadron beams, polarized NH₃, ⁶LiD targets or various unpolarized nuclear targets(Al, Pb, C, W,..)
- ~300 tracking planes
- Hadron absorber for DY running
- Hadron beam ~97 % pion,~ 2 % kaons, ~1 % antiprotons

Polarized target

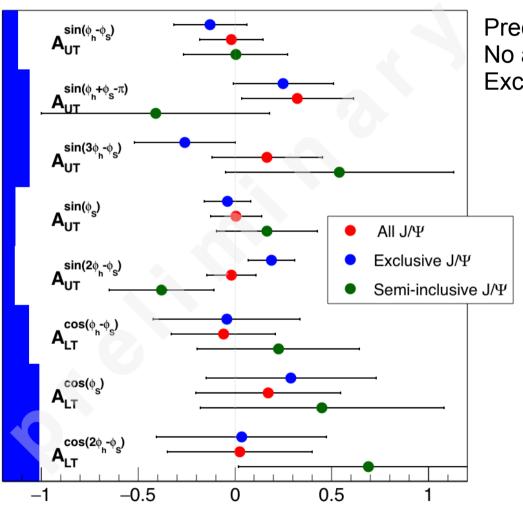
- 1,5 I of material (=solid ammonia, or ⁶LiD in the past)
- Dilution refrigerator for frozen spin mode, T~60 mK
- SC magnet 2 in 1 2.5 T solenoid for polarizing the material 0,6 T dipole to keep the transverse polarization
- Two cell design with 10 NMR coil for polarization measurement
- Relaxation time ~5000-10000 h (muon running T & L)
- Heating by hadron beam leads to relaxation time ~1000 h
- Typical P=80 %


Some COMPASS SIDIS results


Extrated transversity & first moment of Sivers by Anselmino et al.

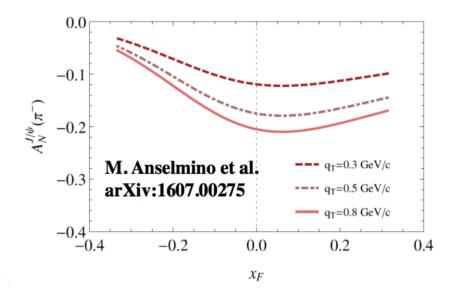
SIDIS with h=J/ψ

- $\mu+p \rightarrow \mu+J/\Psi+X$, $J/\Psi \rightarrow \mu\mu$, 2010 transverse proton data
- Some basic quality cuts on tracks & target position
- Reconstruct invariant mass of µµ pair
- Total 17500 pairs within J/Ψ peak
- 3 different samples exclusive (cut on E_{miss}), inclusive, all
- Evaluate 8 transverse asymmetries (double ratio method)

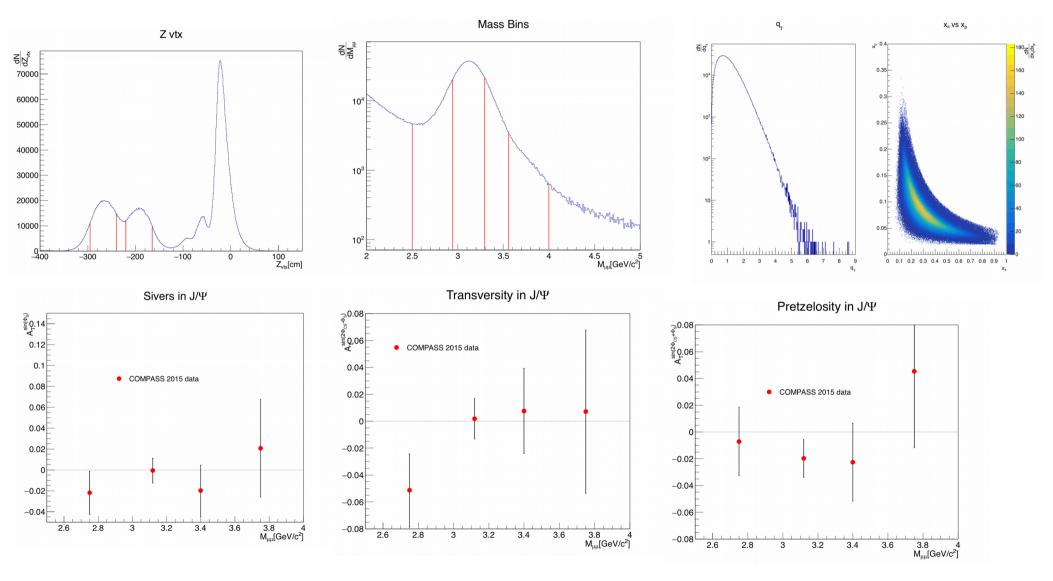


SIDIS with h=J/ψ

SIDIS with h=J/ψ


8 J/Y Asymmetries (all 2010 data)

Precision statistically limited
No asymmetry significantly non-zero
Exclusive might be useful for constraining GPDs


J/ψ production in DY data

Recent, very interesting prediction for COMPASS kinematics by Anselmino et al.:

About 1 million of J/ψs in COMPASS 2015 DY data, more to come in 2018 Ongoing work – worse vertex resolution, many contributions in given mass range,...

J/ψ production in DY data

Conclusion

- Nucleon spin structure still has many unanswered questions
- Many results provided by COMPASS
- Many new measurements to come in near/far future (PANDA, RHIC, JLAB, NICA, COMPASS, EIC)

Thank you for your attention!

Questions?

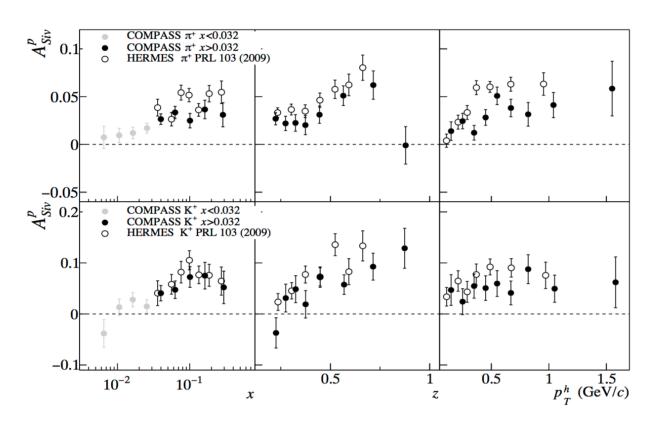
Spares

Recent STAR measurement

Recently STAR measured the left-right asymmetry of dilepton production in p-p collisions with one of the beams polarized

Mass region of Z-boson

Data favors a Sivers TMD with sign-change between DY and SIDIS.


But they performed the measurement of Sivers in very different energy regime from SIDIS measurements, effects of evolution likely to be non-negligible.

The advantage of COMPASS is to acess the Sivers asymmetry in a comparable x-Q² phase space, with similar target and spectrometer, both in SIDIS and DY, thus minimizing possible Q² evolution effects

Hardware modifications for DY data taking

- Hadron absorber+beam plug
- SciFi Vertex detector downstream the target
- Dimuon trigger based on hodoscopes
- New PMM stations
- New large-area DC chamber
- "Proton-free" target cells
- New DAQ system
- Target magnet refurbishment

COMPASS SIDIS results

- Clear effect seen for both pions & kaons
- Smaller than HERMES
- Q² 2-3x higher than HERMES->TMD evolution??

