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Motivation of my work

• Study conceptual and technical problems of quantum gravity
• operator ordering problem
• Hilbert space problem, positive definite inner product, probabilities
• use the symmetries to reduce to a finite degrees of freedom problem

• Study physical problems of quantum cosmology (e.g. initial singularities)

Here, I will describe how the existence of conditional symmetries can
• make the integration of the system of equations of motion easier
• be used to refine canonical quantization by promoting the associated charges to
operators

and I will use a semiclassical approximation to derive some physical insight.



3+1 decomposition of spacetime

ds2 =
(
NαNα −N2) dt2 + 2Nασ

α
i dx

idt+ γαβσ
α
i σ

β
j dx

idxj

where

σα
i,j − σα

j,i = Cα
βγσ

β
j σ

γ
i

γαβ = gαβ + nαnβ

N = −tαnα

Nα = hαβt
β

From now on we set Nα = 0



Lagrangian formulation

Inserting in the vacuum gravitational action

S =

∫
d4x

√
−gR

or coupled to a scalar field

Stot = Sgrav + Smat =

∫
d4x

√
−g

(
R− 1

2
gµν∂µϕ∂νϕ

)
this ansatz for the metric, we obtain Lagrangians of the form

L =
1

2N
Gαβ(q)q̇

αq̇β −NV(q), α = 0, 1,…n

The resulting equations of motion are

Gµν = −1

4
gµνg

κλ∂κϕ∂λϕ+
1

2
∂µϕ∂νϕ,

The Lagrangian is invariant under t = f(t̃) and the following transformation in the
dependent variables

N(t) → Ñ(t̃) = N(f(t̃))f ′(t̃), qα(t) → q̃α(t̃) = qα(f(t̃)).



Hamiltonian formulation

• We start by finding the canonical momenta

pα =
∂L

∂q̇α
=

1

N
Gαβ q̇

β , pN =
∂L

∂Ṅ
= 0

Thus we have a primary constraint
• The Hamiltonian is found by a Legendre transform to be

H = N

(
1

2N2
Gαβpαpβ + V(q)

)
≡ NH

• Consistency demands no time evolution for the constraints

ṗN = {pN , H} ≈ 0 ⇒ H ≈ 0

This is a secondary constraint (Hamiltonian constraint). Its consistency does not
lead to further constraints.

The constraints represent the t-reparametrization invariance of the action



Conditional symmetries

• The definition of the conditional symmetries is

LξG
αβ = ρ(q)Gαβ , LξV (q) = ρ(q)V(q)

where ξ are conformal Killing vector fields.
• Each of the conditional symmetry corresponds to a phase space quantity

Qi := ξαi pα

which satisfies
{Q,H} = NH ≈ 0

i.e. they are symmetries on the constraint surface.
• It can be shown that the variational symmetries of the singular action and the
Lie point symmetries of the equations of motion are the conditional symmetries
(which are conformal Killing fields) plus the scaling symmetry generator plus
the time reparametrization generator.



Constant potential parametrization

• Taking advantage of the reparametrization invariance of the action we can
always perform a lapse rescaling and write

L =
1

2n
Ḡαβ(q)q̇

αq̇β − nV̄ (q)

such that the conditional symmetries become

LξḠ
αβ = 0, LξV̄ (q) = 0

• This happens when the potential V̄ is constant and we choose it equal to 1.
• Under this change, the quantitiesQ retain their form, i.e. they are still conserved
on the constraint surface.

• The dependent variables are the same as in the initial action
• Now we have the following changes in the generators of the action and EOM
symmetries

• the conformal Killing fields→ Killing fields
• the scaling symmetry→ homothecy
• time reparametrization is intact



Integrals of motion

Therefore, for the Lagrangian

L =
1

2N
Gαβ(q)q̇

αq̇β −N

the integrals of motion reduce to the following
• for the Killing vector fields Qi = ξαi pα = κi

• for the homothetic field Qh = κh +
∫
dtN(t)

• Since they are of first order in the velocities/momenta, they can be solved much
easier than the EOM which are of second order.

In addition, the symmetry generators satisfy a Lie algebra of the form

[ξi, ξj ] = ckijξk,

where ckij are the structure constants. The corresponding Poisson bracket satisfy the
same algebra as their generators.



Quantization procedure
Following Dirac’s procedure for the canonical quantization of constrained systems
we have

• Promotion of the canonical variables to operators according to the rule

p̂α = −i ∂

∂qα
, p̂N = −i ∂

∂N

and of the Poisson brackets to commutators {., .} → − i
ℏ [., .].

• We promote the constraints as well as the conserved quantities to operators and
impose them as conditions on the wave function

p̂αΨ := −i ∂

∂qα
Ψ = 0

ĤΨ(q) :=

(
−1

2
2

2
c + 1

)
Ψ(q) = 0, 2

2
c ≡ 2

2 +
d− 2

4(d− 1)
R,

Q̂iΨ := − i

2µ
(µξαi ∂α + ∂αµξ

α
i )Ψ = κiΨ,

The choice for the factor ordering for the kinetic part of the Hamiltonian implied by
the conformal Laplacian stems from the demands of (i) general covariance of the
Lagrangian, (ii) hermiticity of the operators under the inner product of the form∫
dnqµψ∗

1ψ2, with µ a proper measure and (iii) conformal invariance of the action.



• The classical algebra becomes

[Q̂i, Q̂j ] = icmij Q̂m

• Acting on the wave function

[Q̂i, Q̂j ]Ψ = (κiκj − κjκi)Ψ = 0

gives a condition for the constants: cmijκm = 0.
• This relation prohibits the simultaneous realization of all the operators
simultaneously.



Semiclassical analysis

• The wave function is assumed to have the form Ψ(q) = Ω(q)eiS(q).
• Inserting it in the Wheeler-DeWitt equation, we get the following equation

Gαβ∂αS∂βΩ+
Ω

2µ
∂α(µG

αβ∂βS) = 0

and a modified Hamilton-Jacobi equation of the form

1

2
Gαβ∂αS∂βS − 1

2

2Ω

Ω
+ V = 0,

where
Q(q) ≡ − 1

2Ω
2Ω = − 1

2µ
∂α(µG

αβ∂β)Ω.

• The equations of motion are
∂S

∂qα
=

∂L

∂q̇α
.

• We apply these equations for each subalgebra and examine whether their
solution for each algebra approximates the classical one.

• It turns out that the semiclassical solution does not coincide with the classical
whenQ ̸= 0



Example: A massless scalar field in the spatially curved FLRW



Classical solution of a FLRW spacetime in the presence of a massless scalar
field I

• The Robertson-Walker metric is

ds2 = −N2(t)dt2 + a2(t)
[ dr2

1− kr2
+ r2 sin θ2 + r2 sin2 θdφ2

]
• The scalar field is of the form ϕ = ϕ(t)

• The rescaled Lagrangian after a reparametrisation of the lapse function
N = n

6ka
≡ n

V(a,ϕ)
becomes

L = n− 36ka2ȧ2

n
+

3ka4ϕ̇2

n
≡ n− 1

2n
Gαβ q̇

αq̇β

where the supermetric is

Gab =

(
−72ka2 0

0 6ka4

)
• The Killing vector fields and the homothetic of this supermetric are

ξ1 = (
eϕ/

√
3

a
,−2

√
3eϕ/

√
3

a2
), ξ2 = (

e−ϕ/
√
3

a
,
2
√
3e−ϕ/

√
3

a2
)

ξ3 = (0, 1), ξh = (
a

4
, 0)



Classical solution of a FLRW spacetime in the presence of a massless scalar
field II

• The conserved quantities are found to be

Q1 = −12e
ϕ√
3 k(6aȧ2 +

√
3a2ϕ̇)

n2

Q2 =
12e

− ϕ√
3 k(−6aȧ2 +

√
3a2ϕ̇)

n2

Q3 =
6ka4ϕ̇

n

Qh = −18ka3ȧ

n



Solution for the spacetime element

The final spacetime element is

ds2 = − λ

4
√
T (1 + Tϵ)3

dT 2 +
λ
√
T

(1 + Tϵ)

(
dr2

1− r2ϵ
+ r2dθ2 + r2 sin2 θdφ2

)
.

To find it we used the system Qi = κi, i = 1, 2, 3 and Qh = kh + ω where
ω(t) =

∫
dtn and the conditions that ∂ta = ȧ, ω̇ = n This geometry has one

essential constant. The Ricci scalar is

R = −3(Tϵ+ 1)3

2T 3/2λ
,

where we have set λ = − κ3√
3k3/2 rendering the metric element singular for both

T → 0 and T → ∞.



Quantization I

• We impose the quantum constraints and the conserved quantities on the wave
function with quantum measure µ(a, ϕ) = 6

√
3a3k,

Q̂1Ψ = − ie
ϕ/

√
3(−6∂ϕΨ+

√
3a∂aΨ)√

3a2
= κ1Ψ,

Q̂2Ψ = − ie
−ϕ/

√
3(6∂ϕΨ+

√
3a∂aΨ)√

3a2
= κ2Ψ,

Q̂3Ψ = −i∂ϕΨ = κ3Ψ,

ĤΨ =
−144ka4Ψ− 12∂ϕϕΨ+ a(∂aΨ+ a∂aaΨ)

144ka4
= 0

The condition cmijκm = 0 gives as allowed subalgebras the two dimensional
{Q1, Q2} and the one dimensional {Q1}, {Q2}, {Q3}.



The subalgebras wave functions
We thus have the following cases

• For the two-dimensional subalgebra {Q1, Q2} the wave function is found by
applying Q̂1Ψ = 0, Q̂2Ψ = 0, ĤΨ = 0

Ψ12(a, ϕ) = cei
1
4
a2e

− ϕ√
3 (κ1+κ2e

2ϕ√
3 )

• Similarly for the Q1 subalgebra Q̂1Ψ(a, ϕ) = 0, ĤΨ(a, ϕ) = 0 The wave
function is

Ψ1(a, ϕ) = ce
i(− 36ka2e

ϕ√
3

κ1
+ 1

4
a2κ1e

− ϕ√
3 )

• For the Q2 algebra, we impose the relations Q̂2Ψ(a, ϕ) = 0, ĤΨ(a, ϕ) = 0
and the wave function is found to be

Ψ2(a, ϕ) = ce
i( 36ka2e

− ϕ√
3

κ2
+ 1

4
a2κ2e

ϕ√
3 )

• Finally, for the Q3 algebra Q̂3Ψ(a, ϕ) = 0, ĤΨ(a, ϕ) = 0, the wave function
is given by

Ψcl(a, ϕ) = eiϕκ3(A1I−i
√
3κ3

(6a2) +B1Ii
√
3κ3

(6a2)),

Ψop(a, ϕ) = eiϕκ3(A2J−i
√
3κ3

(6a2) +B2Ji
√
3κ3

(6a2)),



Semiclassical analysis I

• The calculation of the quantum potentialQ for the first three cases i.e.
{Q1, Q2}, {Q1}, {Q2} gives zero. Solving the equations of motion

∂L

∂ȧ
=
∂S

∂a
,

∂L

∂ϕ̇
=
∂S

∂ϕ

we get the classical solution.
• In the case of the algebra {Q3} things are different. First we make some
approximations, in order to write the wave function in polar form.

• We find Ψ for the small and large limits of a, using the simplifying assumption
A1 = B1, A2 = B2. For small arguments it is

Ψsm ≈ c1e
iκ3ϕ cos ln a.

for the large values, the wave function becomes

Ψcl
la ≈ ea

2

a
eiκ3ϕ, Ψop

la ≈ sin(6a2)
a

eiκ3ϕ. (1)



Semiclassical analysis II

• The phase function is S = κ3ϕ and the solution of the semiclassical equations
with respect to (a, n) is

a = c, n =
6ka4

κ3
ϕ̇, (2)

Choosing a gauge for ϕ(t), such that the lapse function N(t) of the
semiclassical element is the same as for the classical and inserting the solution
in the 4-dimensional element we find

ds2 = − λ

4
√
T (1 + Tϵ)3

dt2 +
1

1− ϵr2
dr2 + r2dθ2 + r2 sin2 θdφ2,

where c2 = λ2

16
. This spacetime has constant Ricci scalar R = 6k, all higher

derivatives of its Riemann tensor zero and constant all curvature scalars
constructed from its Riemann tensor. Hence, there is no curvature and/or higher
derivative curvature singularity.



Conclusions

• We defined the conditional symmetries for singular systems
• We showed that their use simplify the way to obtain the solution for the
variables classically

• The wave function of each case can be found more easily because of the
additional condition imposed.

• The semiclassical analysis works well for this model, since whenQ = 0, the
solution coincides with the classical one.

• However, we found that in the case that the superpotential is not zero, these do
not coincide.

• For the case of the spatially curved FLRW coupled to a scalar field we found
that in the semiclassical approximation the singularity can be resolved.

Thank you!
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