Drell-Yan measurements at COMPASS

Markéta Pešková
KFNT \& ÚČJF MFF UK

Outline

- Polarised structure of the nucleon
- Drell-Yan process
- Drell-Yan vs. SIDIS
- Drell-Yan setup at COMPASS
- Polarised double-spin azimuthal asymmetries

Spin structure of nucleon

- Nucleon structure in momentum phase space described by PDFs
- LO QCD collinear approximation:

Transverse momentum distributions

- Considering the transverse momentum of partons k_{T} (only for $\left.k_{T} \ll Q^{2}\right)$
- 8 leading twist QCD TMD PDFs: 6 T-invariant functions
- 2 T-odd TMDs: Boer-Mulders function $h_{l}{ }^{\perp}$ a Sivers function $f_{I T}{ }^{\perp}$

Drell-Yan process

- Hadron-hadron reaction with production of massive dilepton pair

$$
\pi^{-}\left(P_{\pi}\right)+p\left(P_{p}, S_{p}\right) \rightarrow \gamma^{*}(q)+X \rightarrow \mu^{-}(l)+\mu^{+}\left(l^{\prime}\right)+X
$$

- DY and SIDIS: Excellent tool for accessing transversity $h_{l}{ }^{q}$ and T-oddTMDs: Sivers $f_{I T}{ }^{\perp}$ and Boer-Mulders $h_{l}{ }^{\perp}$

Drell-Yan

$$
\left.\frac{d \sigma}{d^{4} q d \Omega} \propto \hat{\sigma}_{U}\left\{\begin{array}{l}
\left(1+A_{U}^{1} \cos ^{2} \theta_{C S}+\sin 2 \theta_{C S} A_{U}^{\cos \varphi_{C S}} \cos \varphi_{C S}+\sin ^{2} \theta_{C S} A_{U}^{\cos 2 \varphi_{C S}} \cos 2 \varphi_{C S}\right) \\
\pm\left|\overrightarrow{S_{T}}\right|\left[\begin{array}{l}
\left(A_{T}^{\sin \varphi_{S}}+\cos ^{2} \theta_{C S} \tilde{A}_{T}^{\sin \varphi_{S}}\right) \sin \varphi_{S} \\
+\sin 2 \theta_{C S}\left(A_{T}^{\sin \left(\varphi_{C S}+\varphi_{S}\right)} \sin \left(\varphi_{C S}+\varphi_{S}\right)+A_{T}^{\sin \left(\varphi_{C S}-\varphi_{S}\right)} \sin \left(\varphi_{C S}-\varphi_{S}\right)\right) \\
+\sin ^{2} \theta_{C S}\left(A_{T}^{\sin \left(2 \varphi_{C S}+\varphi_{S}\right)} \sin \left(2 \varphi_{C S}+\varphi_{S}\right)+A_{T}^{\sin \left(2 \varphi_{C S}-\varphi_{S}\right)} \sin \left(2 \varphi_{C S}-\varphi_{S}\right)\right)
\end{array}\right]
\end{array}\right]\right\}
$$

Drell-Yan cross-section in Collins-Soper frame

- unpolarised azimuthal modulations:
$\lambda=\mathrm{A}^{\prime}{ }_{U}, \mu=\mathrm{A}_{U}{ }^{\cos \phi}, v=2 \mathrm{~A}_{U}{ }^{\cos 2 \phi}$

Polarised Transverse-spin asymmetries

- Amplitudes in the cross-section can be obtained by means of azimuthal asymmetries between two transversely polarised parts of the target oppositely to each other
- $A_{U}{ }^{\cos 2 \phi}:$ gives access to Boer-Mulders $h_{l}{ }^{\perp}(\pi)$ a $h_{l}{ }^{\perp}(p)$
- $A_{T}{ }^{\text {sin }}{ }_{s}$: to unpolarised PDF $f_{I}(\pi)$ a Sivers $f_{I T}{ }^{\perp}(p)$
- $A_{T}{ }^{\sin \left(2 \phi+\phi_{s}\right)}$: to Boer-Mulders $h_{l}{ }^{\perp}(\pi)$ and pretzelosity $h_{I T}{ }^{\perp}(p)$
- $A_{T}{ }^{\sin \left(2 \phi-\phi_{s}\right)}:$ to Boer-Mulders $h_{l}{ }^{\perp}(\pi)$ and transverzity $h_{l}(p)$

Drell-Yan vs. SIDIS

- Fundamental QCD prediction based on

TMD approach: Due to their time-reversal odd nature Boer-Mulders and Sivers functions are expected to change sign when measured in SIDIS and Drell-Yan

$$
\left.\left.+\mathrm{S}_{\mathrm{T}} \lambda\left[\cos \left(\phi_{h}-\phi_{S}\right)\left(\sqrt{\left(1-\varepsilon^{2}\right)} A_{L T}^{\operatorname{mos}\left(\phi-\phi_{s}\right)}\right)\right]\right\} \mathrm{g}_{I T}^{\perp}\right]\left.\right|_{D Y} ^{\perp q}=-\left.\left.f_{I T}^{\perp q}\right|_{S I D I S} h_{I}^{q}\right|_{D Y}=-\left.h_{l}^{q}\right|_{S I D I S}
$$

Experiment COMPASS

Drell-Yan setup

History of Drell-Yan measurements at COMPASS

- 2009:3-days test run, unpolarised polyethylen $\left(\mathrm{nCH}_{2}\right)$ target, hadron absorber
- 2014:2-months pilot run, unpolarised ammonia $\left(\mathrm{NH}_{3}\right)$ target, hadron absorber
- 2015 run: 27.4.- I5.II.data taking, polarised ammonia $\left(\mathrm{NH}_{3}\right)$ target, hadron absorber
- Beam energy $190 \mathrm{GeV} / \mathrm{c}^{2}$
- Beam intensity $\sim 8 \times 10^{7 / s}$
- ~73\% polarisation
- Data sample after selections: ~35000 muon pairs for analysis

DY mass ranges

Low mass range $1-2 \mathrm{GeV} / \mathrm{c}^{2}$

-high DY cross-section + high combinational bg (open charm, open bottom)
2. Intermediate mass 2-2.5 GeV/c²
-high contamination of open charm and bg,
3. J / ψ range $2.5-4.3 \mathrm{GeV} / \mathrm{c}^{2}$
$-j / \psi$ and ψ ' peaks
4. High mass 4.3-8.5 GeV/c ${ }^{2}$
-only 4% contamination of bg. and J/ Ψ

2015 kinematic distributions

- Kinematic variables: $x_{N}, x_{\pi}, x_{F} q_{\bar{F}} M$

DY HM phase-space

Distribution of CS angles in HM

Extraction of transverse-spin asymmetries

Results for transverse-spin asymmetries

- Systematical error: $0.7 \cdot \sigma_{\text {stat }}$

Integrated TSAs

Conclusion

- In 2015 COMPASS collected the first sample of polarised Drell-Yan data
- Additional polarised DY measurement is planned for 2018
- Hint for sign change!
... Stay tuned \odot

