

Výjezdní seminář ÚČJF

Contents

Introduction

QCD and χ PT

Rare decay leading ordei

Rare decay radiative corrections Virtual corrections Bremsstrahlur Results

Large N_C Motivation Relevancy Phenomenology

Form factors THS model Comparison Results

Summary

Decays of neutral pions Electromagnetic form factors and radiative corrections

Tomáš Husek

Institute of Particle and Nuclear Physics Charles University, Prague

In collaboration with K. Kampf, J. Novotný (Charles University), S. Leupold (Uppsala University)

> Malá Skála April 22, 2017

Introduction

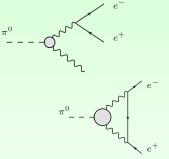
Contents

Introduction

QCD and χ PT

Rare decay leading order

Rare decay radiative corrections Virtual corrections Bremsstrahlung Results LL correction


Large N_C Motivation Relevancy Phenomenolog

Form factors THS model Comparison Results

Summary

Decay modes of neutral pion:

Process	Branching ratio
$\pi^0 o \gamma\gamma$	(98.823 ± 0.034) %
$\pi^0 ightarrow e^+ e^- \gamma$	(1.174 ± 0.035) %
$\pi^0 \rightarrow e^+ e^+ e^- e^-$	$(3.34 \pm 0.16) \times 10^{-5}$
$\pi^0 ightarrow e^+ e^-$	$(6.46 \pm 0.33) \times 10^{-8}$

Rare decay $\pi^0 \to e^+ e^-$

- interesting way to study low-energy (long-distance) dynamics in the SM
- systematic theoretical treatment dates back to Drell, NC (1959)
- suppressed in comparison to the decay $\pi^0 o \gamma\gamma$ by a factor of $2(\alpha m_e/M_\pi)^2$
 - \rightarrow one-loop structure + helicity suppression
 - \rightarrow may be sensitive to possible effects of new physics

KTeV measurement

Contents

Introduction

QCD and χ PT

Rare decay leading order

Rare decay radiative corrections Virtual corrections Bremsstrahlung Results LL correction

Large N_C Motivation Relevancy Phenomenolog

Form factors THS model Comparison Results

Summary

KTeV-E799-II experiment at Fermilab (*Abouzaid et al.*, PRD 75 (2007)) \rightarrow precise measurements of branching ratio $\pi^0 \rightarrow e^+e^-$ (794 candidates)

$$\frac{\Gamma(\pi^0 \to e^+e^-(\gamma), \, x > 0.95)}{\Gamma(\pi^0 \to e^+e^-\gamma, \, x > 0.232)} = (1.685 \pm 0.064 \pm 0.027) \times 10^{-4}$$

Extrapolate the Dalitz decay branching ratio to full range of x

 $B^{\text{KTeV}}(\pi^0 \to e^+e^-(\gamma), x_{\text{D}} > 0.95) = (6.44 \pm 0.25 \pm 0.22) \times 10^{-8}$

- $\bullet~{\rm PDG}$ average value $(6.46\pm0.33)\times10^{-8}$ mainly based on this result
- extrapolate full radiative tail beyond x > 0.95 (*Bergström*, Z.Ph.C 20 (1983))
- scale the result back by the overall radiative corrections
- \rightarrow final result for lowest order (no final state radiation)

$$B_{\rm KTeV}^{\rm no-rad}(\pi^0 \to e^+e^-) = (7.48 \pm 0.29 \pm 0.25) \times 10^{-8}$$

Comparison with SM prediction (Dorokhov and Ivanov, PRD 75 (2007))

$$B_{\rm SM}^{\rm no-rad}(\pi^0 \to e^+ e^-) = (6.23 \pm 0.09) \times 10^{-8}$$

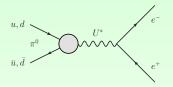
 \rightarrow interpreted as 3.3 σ discrepancy between theory and experiment

New physics?

Contents

Introduction

QCD and χ P1


Rare decay leading order

Rare decay radiative corrections Virtual corrections Bremsstrahlung Results LL correction

Large N_C Motivation Relevancy Phenomenolog

Form factors THS model Comparison Results

Summary

• very fashionable to ascribe eventual discrepancies to effects of new physics

BUT

- first, look for more conventional solution (i.e. within SM)
 - \rightarrow radiative corrections (usually very important)
 - \rightarrow form factor modeling

QCD at low energy

Contents

- Introduction
- QCD and $\chi {\rm PT}$
- Rare decay leading order
- Rare decay radiative corrections Virtual corrections Bremsstrahlun Results
- Large N_{C} Motivation Relevancy Phenomenolog
- Form factors THS model Comparison Results
- Summary

- QCD describes the dynamics of quarks and gluons
- \bullet at low energy we need to describe interactions of hadrons (e.g. pions) instead \to the relevant degrees of freedom are different
- effective description
 - \rightarrow does not need to be necessarily less precise
 - ightarrow in general, the structure at short distances (high energies) is ignored
 - \rightarrow many unknown parameters appear (so called LECs)
 - \rightarrow set from experiment or more fundamental theory (matching)
- the perturbation series is not based on the coupling
 - $\rightarrow \alpha_s$ grows with the distance
 - \rightarrow different power counting schemes derivatives (momenta)
- χ PT answers the question how to construct the Lagrangian monomials \rightarrow Green functions satisfy the same Ward identities as in QCD

Chiral Perturbation Theory

Contents

Introduction

QCD and $\chi {\rm PT}$

Rare decay leading ordei

Rare decay radiative corrections Virtual corrections Bremsstrahlung Results LL correction

Large N_C Motivation Relevancy Phenomenolog

Form factors THS model Comparison Results

Summary

QCD Lagrangian in massless limit

$$\mathcal{L}_{\rm QCD}^{(m_f=0)} = -\frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} + i\bar{q}_{\rm L} \not\!\!\!\! D q_{\rm L} + i\bar{q}_{\rm R} \not\!\!\!\! D q_{\rm R}$$

where

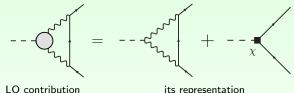
$$q_{\mathsf{L},\mathsf{R}} = rac{1}{2}(1\mp\gamma_5)q\;,\qquad q = \begin{bmatrix} u\\ d\\ s \end{bmatrix}$$

 \rightarrow invariant under chiral symmetry group SU(3)_L \times SU(3)_R

$$\downarrow \\ \mathcal{L}_{\chi \mathsf{PT}} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$

$$\begin{split} \mathcal{L}_2 &= \frac{1}{4} \overline{F_0}^2 \langle D_\mu U (D^\mu U)^\dagger \rangle + \frac{1}{4} \overline{F_0}^2 \langle \chi U^\dagger + U \chi^\dagger \rangle , \quad \chi = 2 \overline{B_0} (s+ip) \\ \mathcal{L}_4 &= \sum_{i=1}^{10} L_i O_4^i \\ \mathcal{L}_6 &= \sum_{i=1}^{90} C_i O_6^i \end{split}$$

Leading order


Contents

- Introduction
- QCD and χ PT

Rare decay leading order

- Rare decay radiative corrections Virtual corrections Bremsstrahlung Results LL correction
- Large N_C Motivation Relevancy Phenomenolog
- Form factors THS model Comparison Results
- Summary

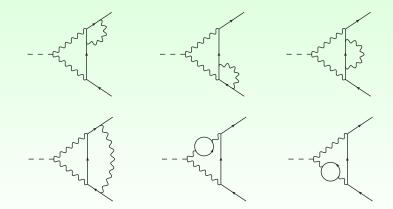
- pions are complicated composite objects
 - \rightarrow elementary interactions are not point-like
- $\bullet\,$ electromagnetic pion transition form factor $F_{\pi^0\gamma^*\gamma^*}$ describes this complexity

LO contribution in QED expansion its representation as the LO of $\chi {\rm PT}$

 $\bullet\,$ free parameter $\chi^{\rm (r)}(\mu)$ appears in the finite part of the counter term

 $\chi = [UV-divergent part] + \chi^{(r)}(\mu)$

 \rightarrow unique for every form factor, e.g. $\chi^{(r)}_{\text{KTeV}}(M_{\rho}) = 6.0 \pm 1.0$

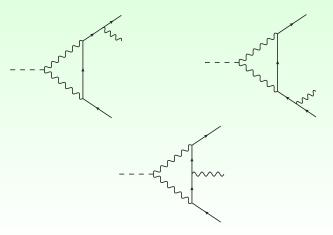


Two-loop virtual radiative corrections

Contents

- Introduction
- QCD and χ PT
- Rare decay leading order
- Rare decay radiative corrections
- Virtual corrections Bremsstrahlung Results LL correction
- Large N_C Motivation Relevancy Phenomenolog
- Form factors THS model Comparison Results
- Summary

• calculated by Vaško and Novotný, JHEP 1110 (2011)

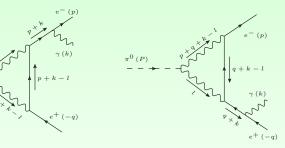


Bremsstrahlung

Contents

- Introduction
- QCD and χ PT
- Rare decay leading order
- Rare decay radiative corrections
- Virtual corrections Bremsstrahlung
- Results LL correction
- Large N_C Motivation Relevancy Phenomenolog
- Form factors THS model Comparison Results
- Summary

- ${\scriptstyle \bullet}$ compensation of infrared divergences in 2-loop contributions
 - \rightarrow TH, Kampf and Novotný, EPJC 74 (2014)


Bremsstrahlung

 $\pi^{0}(P)$

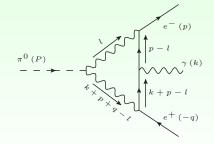
photon emission from the outer fermion line

- Introduction
- QCD and χ PT
- Rare decay leading ordei
- Rare decay radiative corrections
- Virtual corrections Bremsstrahlung
- LL correction
- Large N_C Motivation Relevancy Phenomenolog
- Form factors THS model Comparison Results
- Summary

ullet contain UV subdivergences \rightarrow counter-term tree diagrams with couplig χ

Bremsstrahlung

photon emission from the inner fermion line (propagator)


Contents

- Introduction
- QCD and χ PT
- Rare decay leading order
- Rare decay radiative corrections
- Virtual corrections Bremsstrahlung
- Results LL correction
- Large N_C Motivation Relevancy Phenomenology
- Form factors THS model Comparison Results
- Summary

Do not forget the third, box diagram, necessary to satisfy the Ward identities

$$\mathcal{M}_{(\lambda)} = \varepsilon_{(\lambda)}^{*\rho}(k) \mathcal{M}_{\rho}^{\mathsf{BS}} \quad \longrightarrow \quad k^{\rho} \mathcal{M}_{\rho}^{\mathsf{BS}} = 0$$

• finite contribution to bremsstrahlung amplitude

Final matrix element

Contents

Introduction

QCD and χ PT

Rare decay leading order

Rare decay radiative corrections

Virtual corrections Bremsstrahlung

LL correction

Large N_c Motivation Relevancy Phenomenology

Form factors THS model Comparison Results

Summary

$$\begin{split} i\mathcal{M}_{(\lambda)}(p,q,k) &= \frac{ie^5}{8\pi^2 F} \epsilon^{*\rho}_{(\lambda)}(k) \\ &\times \Big\{ P(x,y) \left[(k \cdot p)q_\rho - (k \cdot q)p_\rho \right] \left[\bar{u}(p,m)\gamma_5 v(q,m) \right] \\ &+ A(x,y) \left[\bar{u}(p,m) \left[\gamma_\rho(k \cdot p) - p_\rho \not k \right] \gamma_5 v(q,m) \right] \\ &- A(x,-y) \Big[\bar{u}(p,m) \left[\gamma_\rho(k \cdot q) - q_\rho \not k \right] \gamma_5 v(q,m) \Big] \\ &+ T(x,y) [\bar{u}(p,m)\gamma_\rho \not k \gamma_5 v(q,m)] \Big\} \end{split}$$

$$\begin{split} \overline{\mathcal{M}^{\mathsf{BS}}(x,y)}|^2 &\equiv \sum_{\lambda} |\mathcal{M}_{(\lambda)}(p,q,k)|^2 = \\ &= \frac{16\pi\alpha^5}{F^2} \frac{M^4(1-x)^2}{8} \Big\{ M^2 \left[x(1-y^2) - \nu^2 \right] \left[xM^2 \left| P \right|^2 \right. \\ &+ 2\nu M \operatorname{Re} \left\{ P^* \left[A(x,y) + A(x,-y) \right] \right\} - 4 \operatorname{Re} \left\{ P^*T \right\} \Big] \\ &+ 2M^2(x-\nu^2)(1-y)^2 \left| A(x,y) \right|^2 + (y \to -y) \\ &- 8\nu M y(1-y) \operatorname{Re} \left\{ A(x,y)T^* \right\} + (y \to -y) \\ &- 4\nu^2 M^2 y^2 \operatorname{Re} \left\{ A(x,y)A(x,-y)^* \right\} + 8(1-y^2) \left| T \right|^2 \Big\} \end{split}$$

Final results

Contents

- Introduction
- QCD and χ PT
- Rare decay leading order
- Rare decay radiative corrections
- Virtual corrections Bremsstrahlun
- Results LL correction
- Large N_C Motivation Relevancy Phenomenolog
- Form factors THS model Comparison Results
- Summary

Size of the radiative corrections (newly calculated)

$$\delta^{\mathsf{NLO}}(0.95) \equiv \delta^{\mathsf{virt.}} + \delta^{\mathsf{BS}}(0.95) = (-5.5 \pm 0.2) \,\%$$

- can be thought as model-independent
- differs significantly from previous approximate calculations

Bergström, Z.Ph.C 20 (1983): $\delta(0.95) = -13.8 \%$ Dorokhov et al., EPJC 55 (2008): $\delta(0.95) = -13.3 \%$

- \bullet original KTeV vs. SM discrepancy reduced to the 2σ level or less
- contact interaction coupling finite part set to

$$\chi_{\rm LMD}^{\rm (r)}(M_{
ho}) = 2.2 \pm 0.9$$

New fit of the coupling $\chi^{(r)}$ value

Contents

- Introduction
- QCD and χ PT

Rare decay leading order

Rare decay radiative corrections

Virtual corrections Bremsstrahlung Results

LL correction

Large N_C Motivation Relevancy Phenomenolog

Form factors THS model Comparison Results

Summary

LMD approximation to the large- N_c spectrum of vector meson resonances \rightarrow theoretically modeled by *Knecht et al.*, PRL 83 (1999)

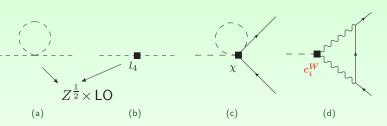
OR

numerically fit the coupling to KTeV result using all available corrections
 alternatively, use approximative formula → same result

$$\chi^{(\mathbf{r})}(M_{\rho}) \simeq \frac{5}{2} + \frac{3}{2} \log\left(\frac{M_{\rho}^2}{m^2}\right) - \frac{\pi^2}{12} - \frac{1}{4} \log^2\left(\frac{M^2}{m^2}\right) + \sqrt{\frac{1}{2} \left(\frac{\pi M}{\alpha m}\right)^2 \frac{B(\pi^0 \to e^+e^-(\gamma), x_{\rm D} > 0.95)}{B(\pi^0 \to \gamma\gamma) \left[1 + \delta^{(2\text{-loop})}(0.95)\right]} - \frac{\pi^2}{4} \log^2\left(\frac{M^2}{m^2}\right)}$$

Final model independent effective value

$$\chi^{(r)}(M_{\rho}) = 4.5 \pm 1.0$$



One-loop diagrams of order α^2/F^3 for process $\pi^0 \to e^+e^-$

Contents

- Introduction
- QCD and χ PT
- Rare decay leading order
- Rare decay radiative corrections Virtual corrections Bremsstrahlung Results
- Large N_C Motivation Relevancy Phenomenolog
- Form factors THS model Comparison Results

Summary

- the leading log estimation, i.e. taking terms $\sim \log^2 \mu^2$ (up to two loops) \rightarrow Weinberg consistency relation
- only the contribution from c_{13}^W diagram survives

The final correction \rightarrow stability in the strong sector

$$\Delta^{\text{LL}}\chi^{(\mathbf{r})}(M_{\rho}) = \frac{1}{36} \left(\frac{M}{4\pi F}\right)^2 \left(1 - \frac{10m^2}{M^2}\right) \log^2\left(\frac{M_{\rho}^2}{m^2}\right) \doteq 0.081$$

End of story?

Contents	

- Introduction
- QCD and χ PT

Rare decay leading order

Rare decay radiative corrections

Virtual corrections Bremsstrahlung Results LL correction

Large N_C Motivation Relevancy Phenomenolog

Form factors THS model Comparison Results

Summary

NLO radiative corrections in the QED sector did not solve the discrepancy \rightarrow back to LO, but use different model

Contents

- Introduction
- QCD and χ PT
- Rare decay leading order
- Rare decay radiative corrections Virtual corrections Bremsstrahlung Results LL correction
- Large N_c
- Motivation Relevancy Phenomenolog
- Form factors THS model Comparison Results
- Summary

- $\bullet\,$ hadron physics described by QCD
 - \rightarrow the SU(3) gauge theory of quarks and gluons
- many phenomena like confinement not well understood
- particle spectrum, decay rates or scattering amplitudes
 - \rightarrow difficult to derive from fundamental theory
 - \rightarrow some results from lattice QCD
- exact solution cannot be even imagined
- need for approximation scheme
 - \rightarrow requires expansion parameter
- SU(3) gauge theory with negligible masses has no obvious free parameter

Contents

- Introduction
- QCD and χ PT
- Rare decay leading order
- Rare decay radiative corrections Virtual corrections Bremsstrahlung Results LL correction

Large N_C

Motivation Relevancy Phenomenolog

Form factors THS model Comparison Results

Summary

- generalization from 3 to N_c colors, SU(3) \rightarrow SU(N_c) gauge group
- possible to solve the theory in large N_c ?
 - $\rightarrow N_c = 3$ theory might be qualitatively/quantitatively close to large N_c limit
- QCD simplifies as N_c becomes large and possesses systematic expansion
 - \rightarrow resembles the known phenomenology of hadron physics
 - \rightarrow expansion parameter $1/N_c$

't Hooft, NPB 72 (1974), Witten, NPB 160 (1979)

Contents

- Introduction
- QCD and χ PT
- Rare decay leading order
- Rare decay radiative corrections Virtual corrections Bremsstrahlung Results LL correction
- Large N_C Motivation Relevancy Phenomenolo
- Form factors THS model Comparison Results
- Summary

Is $1/N_c = 1/3$ small enough?

QED

- \bullet vertices just $e\gamma^{\mu}$ with e=0.302
- \bullet typical expansion parameter is $\alpha = e^2/4\pi \simeq 1/137$
- \implies no information about convergence from expansion parameter itself

QCD with N_c colors

- N_c is the only parameter we know about
- phenomenological reasons
- ${\scriptstyle \bullet}$ something qualitatively correct \implies quantitatively good approximation

Large N_c limit Phenomenological implications

Contents

- Introduction
- QCD and χ PT
- Rare decay leading ordei
- Rare decay radiative corrections Virtual corrections Bremsstrahlung Results LL correction
- Large N_C Motivation Relevancy **Phenomenology**
- Form factors THS model Comparison Results
- Summary

- In Yang–Mills theory at $N_c = \infty$
- 1) mesons (and glue states) are free
 - ${\bullet}\,$ meson decay amplitudes of order $1/\sqrt{N_c}$
 - ${f \circ}\,$ meson-meson elastic scattering amplitudes of order $1/N_c$
- \implies stable and non-interacting
- 2) infinite number of meson states
- 3) elastic amplitudes given as sum of tree diagrams
- \rightarrow not quarks and gluons, but physical mesons are exchanged
- 4) Zweig's rule is exact
- ightarrow mesons pure q ar q states

Contents

- Introduction
- QCD and χ PT

Rare decay leading order

Rare decay radiative corrections Virtual corrections Bremsstrahlung Results LL correction

Large N_C Motivation Relevancy Phenomenology

Form factors THS model Comparison Results

Summary

Many colors \implies large combinatoric factors in Feynman diagrams

- gluon fields $N_c \times N_c$ matrices in adjoint representation, $N_c^2(-1)$ components
- quark fields have N_c components
- 't Hooft's double line notation
- ightarrow gluons have same SU(N_c) QN as $qar{q}$

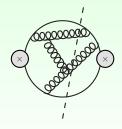
combinatoric factors cancel the vertex factors only in planar diagrams \rightarrow large N_c limit given therefore given only by sum of planar diagrams

Selection rules

1) in large N_c limit the non-planar diagrams are suppressed by factors of $1/N_c^2$ 2) internal quark loops are suppressed by factors of $1/N_c$

Contents

- Introduction
- QCD and χ PT
- Rare decay leading order
- Rare decay radiative corrections Virtual corrections Bremsstrahlung Results LL correction
- Large N_C Motivation Relevancy Phenomenology
- Form factors THS model Comparison Results
- Summary


 \implies leading contributions to matrix elements of quark bilinears are planar graphs with only quarks at the edge

What can be deduced from confining nature and dominance of planar graphs?

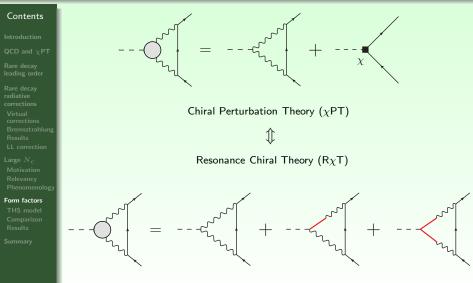
Quark-current bilinears are given by

- infinite sum of
 one-meson exchange contributions with
- 3) stable resonances

$$\langle 0|J(q)J(-q)|0\rangle = \sum_{n} \frac{a_{n}^{2}}{q^{2} - m_{n}^{2}}$$

with e.g. $J(x) := \bar{q}(x)\gamma^{\mu}q(x)$

ATLAS


Contents

- Introduction QCD and χ P
- Rare decay leading order
- Rare decay radiative corrections Virtual corrections Bremsstrahlun Results LL correction
- Large N_C Motivation Relevancy Phenomenology
- Form factors THS model Comparison Results
- Summary

Resonances

THS model for $PVV\xspace$ correlator

Contents

- Introduction
- QCD and χ PT
- Rare decay leading order
- Rare decay radiative corrections Virtual corrections Bremsstrahlung Results LL correction

Large N_C Motivation Relevancy Phenomenolog

Form factors THS model Comparison Results

Summary

- 1) Ansatz for Pseudoscalar-Vector-Vector ($\ensuremath{\textit{PVV}}\xspace)$ correlator
 - Two-Hadron-Saturation (THS) 2 meson multiplets per channel

$$\Pi^{\mathsf{THS}}(r^2; p^2, q^2) \sim \frac{1}{r^2(r^2 - M_P^2)} \frac{P(r^2; p^2, q^2)}{(p^2 - M_{V_1}^2)(p^2 - M_{V_2}^2)(q^2 - M_{V_1}^2)(q^2 - M_{V_2}^2)}$$

- ${\ensuremath{\,\circ\,}}$ in numerator stands general polynomial symmetrical in p^2 and q^2
 - \rightarrow correlator must drop at large momenta
 - \rightarrow 22 free parameters

$$P(r^2; p^2, q^2) = c_0 p^2 q^2 + c_1 [(p^2)^3 q^2 + (q^2)^3 p^2] + c_2 (r^2)^2 p^2 q^2 + \dots$$

2) Use high- and low-energy limits to constrain the parameters

- Operator product expansion (OPE)
- Brodsky–Lepage (B–L) quark counting rules
- chiral anomaly

THS and $\mathcal{F}_{\pi^0\gamma^*\gamma^*}$ form factor

Contents

Introduction

QCD and χ PT

Rare decay leading order

Rare decay radiative corrections Virtual corrections Bremsstrahlung Results LL correction

Large N_C Motivation Relevancy Phenomenolog

Form factors THS model Comparison Results

Summary

Form factor is in general related to \ensuremath{PVV} correlator as

$$\mathcal{F}_{\pi^0 \gamma^* \gamma^*}(p^2, q^2) \sim \lim_{r^2 \to 0} r^2 \Pi(r^2; p^2, q^2)$$

ightarrow in our case complicated, but with only one free parameter

$$\begin{split} \mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\mathsf{THS}}(p^2,q^2) &= -\frac{N_c}{12\pi^2 F} \left[\frac{M_{V_1}^4 M_{V_2}^4}{(p^2 - M_{V_1}^2)(p^2 - M_{V_2}^2)(q^2 - M_{V_1}^2)(q^2 - M_{V_2}^2)} \right] \\ & \times \left\{ 1 + \frac{\kappa}{2N_c} \frac{p^2 q^2}{(4\pi F)^4} - \frac{4\pi^2 F^2 (p^2 + q^2)}{N_c M_{V_1}^2 M_{V_2}^2} \left[6 + \frac{p^2 q^2}{M_{V_1}^2 M_{V_2}^2} \right] \right\} \end{split}$$

 κ determined from fit to $\omega\text{-}\pi$ transition form factor measurements \rightarrow NA60, PLB 677 (2009)

 $\mathbf{\kappa}=21\pm3$

 $M_{V_1} \sim \rho, \omega$ vector-meson mass $M_{V_2} \sim$ between physical masses of first and second vector-meson excitations

 $M_{V_2} \in [1400, 1740] \, \text{MeV}$

VMD and LMD models

Contents

- Introduction
- QCD and χ PT

Rare decay leading order

Rare decay radiative corrections Virtual corrections Bremsstrahlung Results LL correction

Large N_C Motivation Relevancy Phenomenolog

Form factors THS model Comparison Results

Summary

Examples of other approaches

Vector-Meson Dominance (VMD)

$$\mathcal{F}^{\rm VMD}_{\pi^0\gamma^*\gamma^*}(p^2,q^2) = -\frac{N_c}{12\pi^2 F} \left[\frac{M_{V_1}^4}{(p^2 - M_{V_1}^2)(q^2 - M_{V_1}^2)}\right]$$

$$ightarrow$$
 violates OPE: $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(q^2,q^2) \not\sim rac{1}{q^2}, \; q^2
ightarrow -\infty$

Lowest-Meson Dominance (LMD)

$$\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}^{\mathsf{LMD}}(p^{2},q^{2}) = \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}^{\mathsf{VMD}}(p^{2},q^{2}) \left\{ 1 - \frac{4\pi^{2}F^{2}(p^{2}+q^{2})}{N_{c}M_{V_{1}}^{4}} \right\}$$

$$ightarrow$$
 violates BL: $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,q^2) \not\sim rac{1}{q^2}, \; q^2
ightarrow -\infty$

 $\bullet\,$ none of the models used two meson multiplets in both channels $\rightarrow\,$ vector and pseudoscalar

Results

Contents

- Introduction
- QCD and χ P1
- Rare decay leading order
- Rare decay radiative corrections Virtual corrections Bremsstrahlung Results LL correction
- Large N_C Motivation Relevancy Phenomenolog
- Form factors THS model Comparison Results

Summary

Theoretical prediction within THS model

 $B^{\text{THS}}(\pi^0 \to e^+ e^-(\gamma), x_{\text{D}} > 0.95) = (5.8 \pm 0.2) \times 10^{-8}$

- recall experimental value: $B^{\text{KTeV}} = (6.44 \pm 0.33) \times 10^{-8}$ \rightarrow disagreement at the level of only 1.8 σ
- matching on LO $\chi {\rm PT}$ gives $\chi^{\rm (r)}_{\rm THS}(M_{\rm P}) = 2.2\pm0.7$
- $\bullet\,$ if KTeV result confirmed (e.g. by NA62) \rightarrow two scenarios are conceivable:
 - a) some aspects of the THS approach not well-suited for $\pi^0 \to e^+ e^-$
 - b) beyond-Standard Model physics influences the rare pion decay significantly
- under the present circumstances the current discrepancy is inconclusive

Quantity really measured by KTeV

$$\left. \frac{\Gamma(\pi^0 \to e^+ e^-(\gamma) \ , \ x > 0.95)}{\Gamma(\pi^0 \to e^+ e^-\gamma(\gamma) \ , \ x > 0.2319)} \right|_{\rm KTeV} = (1.685 \pm 0.064 \pm 0.027) \times 10^{-4} \times 10^$$

 \rightarrow Dalitz decay comes into play

Summary

Contents

- Introduction
- QCD and χ PT
- Rare decay leading order
- Rare decay radiative corrections
- Virtual corrections Bremsstrahlung Results LL correction
- Large N_C Motivation Relevancy Phenomenolog
- Form factors THS model Comparison Results

Summary

All NLO QED radiative corrections for discussed processes are now available \rightarrow can be taken into account in future experimental analyses

- $\pi^0 \rightarrow e^+e^-$ Vaško and Novotný, JHEP 1110 (2011) TH, Kampf and Novotný, EPJC 74 (2014)
- $\pi^0 \rightarrow e^+ e^- \gamma$ TH, Kampf and Novotný, PRD 92 (2015)

THS model for $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(p^2,q^2)$

- phenomenologically successful
- satisfies all main theoretical constraints
- TH and S. Leupold, EPJC 75 (2015)

Altogether, we get reasonable SM prediction

ightarrow differs from KTeV by 1.8 σ

Goodbye

Introduction

QCD and χ PT

Rare decay leading order

Rare decay radiative corrections Virtual corrections Bremsstrahlus Results

Large N_C Motivation Relevancy Phenomenolog

Form factors THS model Comparison Results

Summary

Thank you for listening!

Tomáš Husek (IPNP, CUNI)