Computational challenges in nuclear energy density functional methods

Petr Veselý
Nuclear Physics Institute, Czech Academy of Sciences www-ucjf.troja.mff.cuni.cz/~vesely/

April 2017

Introduction

Nuclear Structure:

Our aim is to describe whole nuclear chart

Approx. 2500 known isotopes 263 stable 4000 not yet observed

Ab-initio models restricted to lighter nuclear systems...

Introduction

"Domain" of ab-initio models - taken from V. Soma, lectures of 28th Indian-Summer School 2016 http://rafael.ujf.cas.cz/school16/presentations/Soma/GFcourse_Soma_Prague2016.pdf

- Ab initio approaches for closed-shell nuclei
- Since 2000's
- SCGF, CC, IMSRG
- Polynomial scaling
- Ab initio approaches for open-shell nuclei
- Since 2010's
- GGF, BCC, MR-IMSRG
- Polynomial scaling

Introduction

Nuclear Structure:

Our aim is to describe whole nuclear chart

Approx. 2500 known isotopes 263 stable 4000 not yet observed

Energy Density Functional

Mean Field - generated by the HF method from NN interactions
nucleons as non-interacting particles in potential well
mutual interaction of nucleons creates "mean
field" \rightarrow nucleons move in this field

Hartree-Fock method - mean-field is generated "by itself" = self-consistence

$$
\sum_{i j} t_{i j} a_{i} a_{j}
$$

$$
\left.+\frac{1}{4} \sum_{i j k l} V_{i j k l \mid a a_{i j}^{\dagger} a_{j a l}^{\dagger} a_{k}}=\sum_{i j}\left\{t_{i j}+\sum_{k l} V_{k l i j}\langle | a_{k}^{\dagger} a_{k}| \rangle\right\}\right\}_{i}^{\dagger} a_{j}
$$

$$
+\frac{1}{4} \sum_{i j k l} V_{i j k l}: a_{i}^{\dagger} a j a a_{j} a_{k}:
$$

Energy Density Functional

Density Functional - possible to construct

 Mean Field without knowledge of NN interactions$$
\mathcal{H}_{\text {slymeme }}=\frac{\hbar^{2}}{2 m} \tau+
$$

We define energy density

$$
+\frac{1}{2} t_{0}\left[\left(1+\frac{1}{2} x_{0}\right) \rho^{2}-\left(x_{0}+\frac{1}{2}\right) \sum_{q=0, p} p_{q}^{2}\right]-\frac{1}{2} t_{0}\left[\frac{1}{2} x_{0} x_{0} \varepsilon^{2}-\frac{1}{2} \sum_{\left.q=x_{p}, s_{q}^{s_{q}}\right]}\right.
$$ functional as general scalar product of densities

$$
\begin{aligned}
\rho(\vec{r}) & =\sum_{i} \phi_{i}^{*}(\vec{r}) \phi_{i}(\vec{r}) \\
\vec{s}(\vec{r}) & =\sum_{i} \phi_{i}^{*}\left(\vec{r} \vec{\sigma} \phi_{i}(\vec{r})\right. \\
\tau(\vec{r}) & =\sum_{i} \nabla \phi_{i}^{*}(\vec{r}) . \nabla \phi_{i}(\vec{r})
\end{aligned}
$$

$$
+\frac{1}{16} t_{1} x_{1}\left[-\frac{3}{2} \overrightarrow{s^{2}} \Delta \vec{s}+\left(\vec{s} \cdot \vec{T}-\vec{J}^{2}\right)\right]-\frac{1}{16} t_{1} \sum_{q=n, p}\left[-\frac{3}{2} \vec{g}_{q} \Delta \vec{s}_{q}+\left(\vec{s}_{q} \cdot \overrightarrow{\vec{T}_{q}}-\vec{J}_{q}^{2}\right)\right]
$$

$$
+\frac{1}{16} t_{2}\left(1+\frac{1}{2} x_{2}\right)\left[\rho \Delta \rho+4\left(\rho \tau-\vec{j}^{2}\right)\right]+\frac{1}{16} t_{2}\left(1+2 x_{2}\right) \sum_{q=n, p}\left[\frac{1}{2} \rho_{q} \Delta \rho_{q}+2\left(\rho_{q} \tau_{q}-\vec{j}_{q}^{2}\right)\right]
$$

$$
+\frac{1}{16} t_{2} x_{2}\left[\frac{1}{2} \vec{s} \Delta \vec{s}+\left(\vec{s} \cdot \vec{T}-\vec{J}^{2}\right)\right]+\frac{1}{16} t_{2} \sum_{q=n, p}\left[\frac{1}{2} \vec{s}_{q} \Delta \vec{s}_{q}+\left(\vec{s}_{q} \cdot \vec{T}_{q}-\vec{J}_{q}\right)\right]
$$

$\vec{j}(\vec{r})=\sum_{i}\left(\phi_{i}^{*}(\vec{r}) \nabla \phi_{i}(\vec{r})-\left(\nabla \phi_{i}^{*}(\vec{r}) \phi_{i}(\vec{r})\right)\right.$
$\vec{T}(\vec{r})=\sum_{i} \nabla \phi_{i}^{*}(\vec{r}) . \vec{\sigma} \nabla \phi_{i}(\vec{r})$

$$
-\frac{1}{16} t_{1}\left(1+\frac{1}{2} x_{1}\right)\left[3 \rho \Delta \rho-4\left(\rho \tau-\vec{j}^{2}\right)\right]-\frac{1}{16} t_{1}\left(1+2 x_{1}\right) \sum_{q=n, p}\left[-\frac{3}{2} \rho_{q} \Delta \rho_{q}+2\left(\rho_{q} \tau_{q}-\vec{j}_{q}^{2}\right)\right]
$$

$$
+\frac{1}{8} t_{3}\left[\left(1+\frac{1}{2} x_{3}\right) \rho^{2}-\left(x_{3}+\frac{1}{2}\right) \sum_{q=n, p} \rho_{q}^{2}\right] \rho^{\alpha}-\frac{1}{8} t_{3}\left[\frac{1}{2} x_{3} s^{2}-\frac{1}{2} \sum_{q=n, p} \vec{s}_{q}^{2} \rho^{\alpha}\right.
$$

$$
-\frac{1}{2} t_{4} \sum_{q_{1} q_{2}}\left(1+\delta_{q_{1} q_{2}}\left[\left(\vec{\nabla} \times \vec{J}_{q_{1}}\right) \cdot \overrightarrow{s_{q_{2}}}+\rho_{q_{2}} \vec{\nabla} \cdot \vec{J}_{q_{1}}\right]\right.
$$

$J_{k}(\vec{r})=\sum_{i} \varepsilon_{k l m}\left(\left(\nabla_{l} \phi_{i}^{*}(\vec{r})\right) \sigma_{m} \phi_{i}(\vec{r})-\phi_{i}^{*}(\vec{r}) \sigma_{m}\left(\nabla_{l} \phi_{i}(\vec{r})\right)\right.$
dependence on circa 10 free parameters of the model

Kohn-Sham eq. equiv. Hartree-Fock eq.
mean field (single particle levels)

Random Phase Approximation

Nuclear excitations within 1 particle-hole excitations

$\left|\nu>=Q_{\nu}^{\dagger}\right| \tilde{0}>=\sum_{p h}\left(X_{p h}^{\nu} a_{p}^{\dagger} a_{h}-Y_{p h}^{\nu} a_{h}^{\dagger} a_{p}\right) \mid \tilde{0}>\quad$ RPA phonons
$\left.\left\langle\tilde{0}\left[\delta Q_{\nu^{\prime}},\left[\hat{H}, Q_{\nu}^{\dagger}\right]\right] \mid \tilde{0}\right\rangle=\left(E_{\nu}-E_{\tilde{0}}\right)\langle\tilde{0}|\left[\delta Q_{\nu^{\prime}} Q_{\nu}^{\dagger}\right]\right] \tilde{0}>$
Equation of motion
$\left(\begin{array}{cc}A & B \\ B^{*} & A^{*}\end{array}\right)\binom{X^{*}}{Y^{v}}=\hbar \Omega_{v}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{X^{v}}{Y^{v}} \quad$ RPA equation
$A_{\text {minj }}=\langle\mathrm{HF}|\left[a_{i}^{+} a_{m}\left[H, a_{n}^{+} a_{j}\right]\right]|\mathrm{HF}\rangle=\left(\epsilon_{m}-\epsilon_{i}\right) \delta_{m n} \delta_{i j}+\bar{t}_{m j i n}$
$B_{\text {minj }}=-\langle\mathrm{HF}|\left[a_{i}^{+} a_{m}\left[H, a_{j}^{+} a_{n}\right]\right]|\mathrm{HF}\rangle=\bar{v}_{m m j}$.

RPA matrix dimension (2D x 2D)

Photoabsorption Spectrum

Photoabsorption total cross section:

$$
\sigma(E \lambda \mu)=8 \pi^{3} \frac{\lambda+1}{\lambda[(2 \lambda+1)!!]^{2}} \sum_{\nu}\left(\frac{\omega_{\nu}}{\hbar c}\right)^{2 \lambda-1}|<\nu| \hat{M}(\lambda \mu)|g s>|^{2}
$$

$$
\begin{aligned}
& \text { The definition of stregth function: } \\
& \begin{array}{c}
S(E \lambda \mu)=\sum_{\nu} B\left(g . s . \rightarrow \nu, \hbar \omega_{\nu}\right) \delta\left(E-\hbar \omega_{\nu}\right) \\
\qquad S_{L}(E \lambda \mu)=2 \lambda-1 \\
\sum_{\nu} \omega_{\nu}^{L}|<\nu| \hat{M}(\lambda \mu)|g s>|^{2} \zeta\left(\omega-\omega_{\nu}\right)
\end{array}
\end{aligned}
$$

$$
\zeta\left(\omega-\omega_{j}\right)=\frac{1}{2 \pi} \frac{\Delta}{\left(\omega-\omega_{\nu}\right)^{2}+(\Delta / 2)^{2}}
$$

too high density of states in the region of giant resonances \rightarrow Lorentzian smoothes strength function

Basis - dimensions

HO oscillator basis

Quantum harmonic oscillator

j-scheme:
m-scheme:

$$
\#=\left(N_{0}+1\right)^{\star}\left(N_{0}+2\right) / 2
$$

$\#=\left(\mathrm{N}_{0}+1\right) *\left(\mathrm{~N}_{0}+2\right)^{*}\left(\mathrm{~N}_{0}+3\right) / 3$

Spherical basis <=> j-scheme
Deformed basis <=> m-scheme

\# single particle states

N_{0}	j -scheme	m-scheme
0	1	2
1	3	8
2	6	20
3	10	40
4	15	70
5	21	112
6	28	168
7	36	240
8	45	330
9	55	440
10	66	572
11	78	728
12	91	910
13	105	1120
14	120	1360
15	136	1632
16	153	1938
17	171	2280
18	190	2660
19	210	3080

Random Phase Approximation

Quantum harmonic oscillator

RPA matrix - dimension (2D x 2D)
$\left|\nu>=Q_{\nu}^{\dagger}\right| \tilde{0}>=\sum_{p h}\left(X_{p h}^{\nu} a_{p}^{\dagger} a_{h}-Y_{p h}^{\nu} a_{h}^{\dagger} a_{p}\right) \mid \tilde{0}>$
$\left(\begin{array}{ll}A & B \\ B^{*} & A^{*}\end{array}\right)\binom{X^{\nu}}{Y^{v}}=\hbar \Omega_{v}\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)\binom{X^{\nu}}{Y^{v}}$
$D=\left(K_{\mathrm{p}}{ }^{*} K_{\mathrm{h}}\right)$
D ~ $\left(\mathrm{N}_{0}\right)^{2} \quad \ldots$ spherical
D ~ $\left(\mathbf{N}_{0}\right)^{3} \quad$... deformed

N_{0}	D - spherical	D - deformed
0	-	-
1	-	-
2	9	96
3	21	256
4	36	496
5	54	832
6	75	1280
7	99	1856
8	126	2576
9	156	3456
10	189	4512
11	225	5760
12	264	7216
13	306	8896
14	351	10816
15	399	12992
16	450	15440
17	504	18176
18	561	21216
19	621	24576

"Quasiparticles" in nuclei

particle-hole excitations
we need to distinguish occupied and unoccupied levels
nuclei with semi-closed shell

nucleons "jumping" between energetically very close levels
"smearing" of Fermi energy
occupations of levels
$0<V_{i}^{2}<1$
becomes probabilistic
quasiparticle states - partially occupied orbits

Random Phase Approximation

Quantum harmonic oscillator

Quasiparticle formulation of
RPA matrix - dimension (2D $\times 2 D$)
Quasiparticle formulation of
RPA matrix - dimension (2D $\times 2 D$)

$$
\begin{aligned}
& Q_{\nu}^{+}=\frac{1}{2} \sum_{i j}\left(X_{i j}^{(\nu)} \alpha_{i}^{+} \alpha_{j}^{+}-Y_{i j}^{(\nu)} \alpha_{j} \alpha_{i}\right) \\
& \left(\begin{array}{ll}
A & B \\
B^{*} & A^{*}
\end{array}\right)\binom{X^{v}}{Y^{v}}=\hbar \Omega_{v}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)\binom{X^{v}}{Y^{v}} \\
& \mathrm{D}=\mathrm{K}^{*}(\mathrm{~K}-1) / 2 \\
& \text { D ~ }\left(\mathbf{N}_{0}\right)^{4} \quad \ldots \text { spherical } \\
& \text { D ~ }\left(\mathbf{N}_{0}\right)^{6} \quad \ldots \text { deformed } \\
& Q_{\nu}^{+}=\frac{1}{2} \sum_{i j}\left(X_{i j}^{(\nu)} \alpha_{i}^{+} \alpha_{j}^{+}-Y_{i j}^{(\nu)} \alpha_{j} \alpha_{i}\right) \\
& \left(\begin{array}{ll}
A & B \\
B^{*} & A^{*}
\end{array}\right)\binom{X^{v}}{Y^{v}}=\hbar \Omega_{v}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)\binom{X^{\nu}}{Y^{v}} \\
& D=K^{*}(K-1) / 2 \\
& \text { D ~ }\left(\mathbf{N}_{0}\right)^{4} \text {... spherical } \\
& \text { (} \mathrm{N}_{0} \text {) ...deformed }
\end{aligned}
$$

Quasiparticle formulation

Random Phase Approximation

Quasiparticle formulation

Matrices $\sim\left(10^{7} \times 10^{7}\right)$
\rightarrow methods to solve the eigenvalue problem only for a subset of states without generating the full RPA matrix

Quasiparticle formulation of RPA matrix - dimension (2D x 2D)
$Q_{\nu}^{+}=\frac{1}{2} \sum_{i j}\left(X_{i j}^{(v)} \alpha_{i}^{+} \alpha_{j}^{+}-Y_{i j}^{(v)} \alpha_{j} \alpha_{i}\right)$
$\left(\begin{array}{cc}A & B \\ B^{*} & A^{*}\end{array}\right)\binom{X^{v}}{Y^{v}}=A \Omega_{r}\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)\binom{X^{v}}{Y^{v}}$
$\mathrm{D}=\mathrm{K}^{*}(\mathrm{~K}-1) / 2$
D $\sim\left(\mathrm{N}_{0}\right)^{4}$... spherical
D $\sim\left(\mathbf{N}_{0}\right)^{6} \quad$... deformed

N_{0}	D - spherical	D - deformed
0	-	-
1	3	28
2	15	190
3	45	780
4	105	2415
5	210	6216
6	378	14028
7	630	28680
8	990	54285
9	1485	96580
10	2145	163306
11	3003	264628
12	4095	413595
13	5460	626640
14	7140	924120
15	9180	1330896
16	11628	1876953
17	14535	2598060
18	17955	3536470
19	21945	4741660

Arnoldi Diagonalization Method

Arnoldi Diagonalization Method - an iterative method to calculate RPA strength functions without construction and diagonalization of the full RPA matrix

PHYSICAL REVIEW C 81, 034312 (2010)
Linear response strength functions with iterative Arnoldi diagonalization
J. Toivanen, ${ }^{1}$ B. G. Carlsson, ${ }^{1}$ J. Dobaczewski, ${ }^{1,2}$ K. Mizuyama, ${ }^{1}$ R. R. Rodríguez-Guzmán, ${ }^{1}$ P. Toivanen, ${ }^{1}$ and P. Vesely ${ }^{1}$
${ }^{1}$ Department of Physics, University of Jyväskyla, FIN-40014, Finland
${ }^{2}$ Institute of Theoretical Physics, Warsaw University, PL-00681, Warsaw, Poland
(Received 16 December 2009; published 24 March 2010)

Abstract

We report on an implementation of a new method to calculate random phase approximation (RPA) strength functions with iterative non-Hermitian Arnoldi diagonalization method, which does not explicitly calculate and store the RPA matrix. We discuss the treatment of spurious modes, numerical stability, and how the method scales as the used model space is enlarged. We perform the particle-hole RPA benchmark calculations for double magic nucleus ${ }^{132} \mathrm{Sn}$ and compare the resulting electromagnetic strength functions against those obtained within the standard RPA.

Arnoldi Diagonalization Method

Arnoldi Diagonalization Method - an iterative method to calculate RPA strength functions without construction and diagonalization of the full RPA matrix
$\left|\nu>=Q_{\nu}^{\dagger} \tilde{0}\right\rangle=\sum_{p h}\left(X_{p h}^{\nu} a_{p}^{\dagger} a_{h}-Y_{p h}^{\nu} a_{h}^{\dagger} a_{p}\right) \mid \tilde{0}>\quad$ RPA phonon operator
We start with a pivot vector

$$
\underbrace{X_{m i}^{1}=\frac{e}{\sqrt{N^{1}}}\left\langle\phi_{m}\right| r^{p} Y_{J M \mid}\left|\phi_{i}\right\rangle,}_{\text {E1 strength function }} \begin{aligned}
& Y_{m i}^{1}=0, \\
& \text { E }
\end{aligned}
$$

(we can choose other J ${ }^{\pi}$)
We only need to know a product of the RPA matrix with a vector

$$
\begin{aligned}
& \binom{\mathcal{W}_{+}^{k}}{\mathcal{W}_{+}^{\prime k}}=\left(\begin{array}{cc}
A & B \\
-B^{\prime *} & -A^{\prime *}
\end{array}\right)\binom{\mathcal{X}^{k}}{\mathcal{Y}^{k}}: \\
& \binom{\mathcal{W}_{-}^{k}}{\mathcal{W}_{-}^{\prime k}}=\left(\begin{array}{cc}
A & B \\
-B^{\prime *} & -A^{\prime *}
\end{array}\right)\binom{\mathcal{Y}^{k *}}{\mathcal{X}^{k *}}
\end{aligned}
$$

Arnoldi Diagonalization Method

Arnoldi Diagonalization Method - an iterative method to calculate RPA strength functions without construction and diagonalization of the full RPA matrix

Iterations: if we have set of \mathbf{k} vectors, we can add $\mathbf{(k + 1) t h}$ vector by the following

$$
\begin{aligned}
& \binom{\tilde{\mathcal{X}}^{k+1}}{\tilde{\mathcal{Y}}^{k+1}}=\binom{\mathcal{W}_{+}^{k}}{\mathcal{W}_{+}^{k}}-\sum_{i=1}^{k}\binom{\mathcal{X}^{i}}{\mathcal{Y}^{i}} a_{i k}+\sum_{i=1}^{k}\binom{\mathcal{Y}^{i k}}{\mathcal{X}^{i *}} b_{i k}, \\
& \binom{\tilde{\mathcal{Y}}^{\tilde{k}+1 *}}{\tilde{\mathcal{X}}^{k+1 *}}=-\binom{\mathcal{W}_{-}^{k}}{\mathcal{W}_{-}^{k}}+\sum_{i=1}^{k}\binom{\mathcal{X}^{i}}{\mathcal{X}^{i}} b_{b_{k}^{\prime *}}-\sum_{i=1}^{k}\binom{\mathcal{Y}^{\prime k}}{\mathcal{X}^{i k}} a_{i k}^{d_{i k}^{*}}, \\
& \text { Moreover - we orthogonalize } \\
& \text { the }(\mathbf{k}+\mathbf{1}) \text { th state to all the } \mathbf{k} \\
& \text { previous states in each } \\
& \text { iteration }
\end{aligned}
$$

where the elements $\mathbf{a}_{i k^{\prime}} \boldsymbol{b}_{i k}$ are defined as:

$$
\begin{aligned}
& a_{i k}=\left(\mathcal{X}^{i *}, \mathcal{Y}^{i *}\right)\binom{\mathcal{W}_{+}^{k T}}{-\mathcal{W}_{+}^{k T}}, \\
& b_{i k}=\left(\mathcal{Y}^{i}, \mathcal{X}^{i}\right)\binom{\mathcal{W}_{+}^{k T}}{-\mathcal{W}_{+}^{k T}},
\end{aligned}
$$

Arnoldi Diagonalization Method

Arnoldi Diagonalization Method - an iterative method to calculate RPA strength functions without construction and diagonalization of the full RPA matrix
In each iteration we have d vectors $\binom{\mathcal{X}^{k}}{\mathcal{Y}^{k}}$ which form Krylov subspace of full RPA space (RPA matrix with a dimension 2D).

$$
d \ll \boldsymbol{D}
$$

We solve an RPA equation problem in the Krylov subspace (of dimension d) in each iteration...

$$
\left(\begin{array}{cc}
a & b \\
-b^{*} & -a^{*}
\end{array}\right)\binom{x^{k}}{y^{k}}=\hbar \omega_{k}\binom{x^{k}}{y^{k}}
$$

We obtain the eigen-energies: $\hbar \omega_{k}$ and calculate strength functions until the convergence is reached...

Arnoldi Diagonalization Method

FIG. 1. The 0^{+}strength functions in ${ }^{132} \mathrm{Sn}$ calculated by using 25 HO shells and 100 Arnoldi iterations for the SkM^{*} functional (solid lines), compared with the standard RPA calculation of Ref. [17] obtained for the SkM^{*} functional (dashed lines).

FIG. 4. Similar to Fig. 1 but for the 2^{+}strength functions. All results were calculated for the SkM^{*} functional.

FIG. 2. Convergence of the ${ }^{132} \mathrm{Sn} 0^{+}$strength functions of Fig. 1. Solid lines are for the IS and dashed lines are for the IV strength functions. Each panel shows the difference of two strength functions, one with n iterations and the other calculated with $n-20$ iterations.

FIG. 5. Similar to Fig. 2 but for the 2^{+}strength functions.

Arnoldi Diagonalization Method

Arnoldi Diagonalization Method - is meaningful only if the convergence is reached for dimension of the Krylov subspace $\mathbf{d} \ll \mathbf{D}$!

In the test calculations of the paper PRC 81, 034312 (2010) the convergence usualy reached (within reasonable precision) for ~ 100 iterations...

Application \rightarrow systematic study of Giant Monopole Resonances (GMR) in most of spherical nuclei of the chart: Phys. Rev. C 86, 024303 (2012)

centroid of GMR

$$
E_{\mathrm{GMR}}=\frac{m_{1}}{m_{0}}
$$

$\mathbf{m}_{0}, \mathbf{m}_{1}$ moments of giant resonance

convergence of centroid

Arnoldi Diagonalization Method

Arnoldi Diagonalization Method - is meaningful only if the convergence is reached for dimension of the Krylov subspace $\mathbf{d} \ll \mathbf{D}$!

But important is also the reduction of the time needed for RPA calculation - useful for large systematic calculations (calculations of whole nuclear chart, fitting of parametrizations)...

FIG. 12. Times to calculate 100 Arnoldi iterations for the spherical QRPA method applied to ${ }^{132} \mathrm{Sn}$ as functions of N_{0}. Squares and circles show results for the 1^{-}and 2^{+}modes, respectively, and lines show cubic fits.

FIG. 4. (Color online) Incompressibility K_{A} calculated for the isotopic chains of semimagic nuclei with $Z=8,20,28,50$, and 82. Left and right panels show results obtained for the SLy4 and UNEDF0 functionals, respectively. Full (empty) symbols correspond to the zero-range (separable) pairing force.

RPA calculation $\sim 10^{1} \mathrm{sec} \rightarrow$ allows large scale calculations...

Systematic Calculations of Nuclear Properties

S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)

TABLE I. Ground-state properties of even-even isotopes with $Z=6-20$ obtained by the HF+BCS and HF with SkM ${ }^{*}$ calculation: quadrupole deformation parameters (β_{2}, γ), pairing gaps for neutrons and protons (Δ_{n}, Δ_{p}), and chemical potentials for neutrons and protons (λ_{n}, λ_{p}). In the case of normal phase ($\Delta=0$), we define the chemical potential as the single-particle energy of the highest occupied orbital, $\lambda_{n}=\epsilon_{N}^{0}$ and $\lambda_{p}=\epsilon_{\mathrm{Z}}^{0}$. The pairing gaps and chemical potentials are given in units of MeV .

	β_{2}	γ	Δ_{n}	Δ_{p}	$-\lambda_{n}$	$-\lambda_{p}$	$\beta_{2}^{\text {HF }}$	γ^{HF}	$-\lambda_{n}^{\mathrm{HF}}$	$-\lambda_{p}^{\mathrm{HF}}$
${ }^{8} \mathrm{C}$	0.00		0.00	0.00	31.22	2.96	0.00		31.19	2.95
${ }^{10} \mathrm{C}$	0.23	0°	0.00	0.00	17.00	7.86	0.23	0°	16.99	7.84
${ }^{12} \mathrm{C}$	0.00		0.00	0.00	16.82	14.07	0.00		16.80	14.06
${ }^{14} \mathrm{C}$	0.00		0.00	0.00	8.94	18.24	0.00		8.94	18.23
${ }^{16} \mathrm{C}$	0.14	0°	1.00	0.00	4.56	21.22	0.27	0°	5.25	20.52
${ }^{18} \mathrm{C}$	0.27	0°	0.57	0.00	3.90	23.71	0.30	0°	4.69	23.53
${ }^{20} \mathrm{C}$	0.23	60°	0.00	0.00	4.84	27.53	0.23	60°	4.83	27.50
${ }^{22} \mathrm{C}$	0.00		0.00	0.00	3.41	30.25	0.00		3.42	30.21
${ }^{14} \mathrm{O}$	0.00		0.00	0.00	20.81	5.69	0.00		20.80	5.68
${ }^{16} \mathrm{O}$	0.00		0.00	0.00	13.54	10.26	0.00		13.53	10.25
${ }^{18} \mathrm{O}$	0.00		1.06	0.00	7.94	13.91	0.15	0°	7.75	13.58
${ }^{20} \mathrm{O}$	0.00		1.10	0.00	7.45	17.34	0.18	0°	7.80	16.81
${ }^{2} \mathrm{O}$	0.00		0.00	0.00	8.06	20.66	0.00		8.04	20.65
${ }^{24} \mathrm{O}$	0.00		0.00	0.00	5.17	22.63	0.00		5.17	22.61
${ }^{26} \mathrm{O}$	0.00		0.80	0.00	1.13	24.87	0.07	60°	1.26	24.79
${ }^{16} \mathrm{Ne}$	0.25	0°	0.00	0.54	23.06	0.91	0.29	0°	22.81	1.48
${ }^{18} \mathrm{Ne}$	0.00		0.00	1.07	17.16	4.01	0.16	0°	16.82	3.86
${ }^{20} \mathrm{Ne}$	0.37	0°	0.00	0.00	13.07	9.19	0.37	0°	13.07	9.18
${ }^{2} \mathrm{Ne}$	0.37	0°	0.00	0.00	11.03	12.38	0.37	0°	11.03	12.37
${ }^{24} \mathrm{Ne}$	0.17	60°	0.00	0.74	10.57	13.04	0.20	60°	10.62	13.51
${ }^{26} \mathrm{Ne}$	0.00		0.00	1.00	7.17	14.92	0.14	0°	6.95	14.92
${ }^{28} \mathrm{Ne}$	0.00		0.79	1.01	3.22	17.05	0.16	0°	3.77	17.41
${ }^{30} \mathrm{Ne}$	0.00		0.00	1.01	3.79	19.09	0.35	0°	4.14	21.35
${ }^{32} \mathrm{Ne}$	0.36	0°	0.95	0.00	2.16	23.61	0.41	0°	2.92	24.28
${ }^{18} \mathrm{Mg}$	0.31	0°	0.00	0.00	25.59	0.20	0.31	0°	25.56	0.19
${ }^{20} \mathrm{Mg}$	0.00		0.00	1.13	20.53	2.83	0.18	0°	19.99	3.18
${ }^{2} \mathrm{Mg}$	0.38	0°	0.00	0.00	16.31	6.42	0.38	0°	16.30	6.42
${ }^{24} \mathrm{Mg}$	0.39	0°	0.00	0.00	14.12	9.51	0.39	0°	14.12	9.50
${ }^{26} \mathrm{Mg}$	0.20	54°	0.00	0.86	13.08	11.23	0.24	8°	11.37	11.67

Fully self-consistent calculation of E1 strength distribution

Inakura, Nakatsukasa, Yabana, in preparation

Fully self-consistent calculation of E1 strength distribution

Inakura, Nakatsukasa, Yabana, in preparation

