Singularity and OSG

Brian Bockelman
WLCG Workshop, June 2017

What problems are we
solving”?

» Isolation: We launch arbitrary user code (“payload”) that shouldn't have
access to our wrapper scripts (“pilot”). Specifically:

* File isolation: pilot determines what files the payloads can read and write.

* Process isolation: payload can only interact with (see, signal, trace) its
OWN Processes.

* These are simple kinds of isolation. Others (e.g., kernel isolation,
network isolation) are less important!

* glexec replacement: Retire our particularly problematic current solution to
Isolation. Niche and expensive.

« Homogeneous / portable OS environments: Make user OS environment as
minimal and identical as possible!

Old Adventures in |solation and Traceability:
MUPJ and glexec

 The WLCG experiments have heavily used the Multi-User Pilot Job (MUPJ) model:

* A generic “pilot job,” owned by the experiment, is submitted to the site batch
system.

* This pilot job launches one or more scientific payload jobs. This is where the
“actual computing” is done!

 Each payload job belongs to an individual user.

* We need isolation so user payloads cannot interact with each other or the pilot.
(No credential stealing!!).

* We need traceability so sites can identify who uses a computing resource at any
given time.

e Traditionally, isolation and traceability is provided by the batch system: launches
each user’s jobs as a separate Unix user.

Introducing: Singularity

Singularity is a container solution tailored for the HPC
use case.

* |t allows for a portable of OS runtime
environments.

|t can provide isolation needed by our users.
Simple isolation: Singularity does not do resource

management (i.e., limiting memory use), leaving that
to the batch system.

Operations: No daemons, no UID switching; no httD//SlnguIarltbeI .gov

edits to config file needed. “Install RPM and done.”

Goal: User has no additional privileges by being
Inside container. E.qg., disables all setuid binaries

Inside the container.

http://singularity.lbl.gov

Yet Another Container
Syndrome

 "But we already support Docker! Why do we need
Yet Another Container?”

» Singularity support works even if invoker runs as
non-root (i.e., glideinWMS).

e Singularity does not require any additional system
services / daemons. Tradeoff: requires setuid.

 Works inside Docker — important for sites that
already invest heavily in Docker (like minel).

IMPORTANT:
Singularity provides a path
{0 Nnon-setuid Isolation

And there was great rejoicing!

¢ v
"N)
“
~ ‘v"
~
* .

Why Docker®?

 There remain a good number of reasons to use Docker:

 Docker implements additional resource management and
Isolation mechanisms.

e Built-in image distribution mechanism.
 Wider acceptance / larger ecosystem / more mature.

e Jo each their own: pick the correct technology to fit your site.
e For example, both technologies are built-in to HTCondor.

 Nebraska uses both: Docker for site batch system, Singularity for
pilots inside the batch system.

View From the Worker Node

/usr/sbin/condor_master -f
_ condor_procd -A /var/run/condor/procd_pipe -L /var/log/condor/ProcdlLog -R 1000000 -S 60 -C 554
_ condor_shared_port -f S_ B h S
_ condor_startd -f
_ condor_starter -f -a slotl_1 red-gw2.unl.edu Ite atc VStem
_ python /usr/local/libexec/condor-docker run --cpu-shares=560 --memory=250000m --hostname cmspr
_ /usr/bin/docker-current run --cpu-shares=560 --memory=250000m --name HTCJob406040_0_slotl_
/usr/bin/dockerd-current --add-runtime docker-runc=/usr/libexec/docker/docker-runc-current --default-runti
DOCker _ /usr/bin/docker-containerd-current -1 unix:///var/run/docker/libcontainerd/docker-containerd.sock --sh
_ /usr/bin/docker-containerd-shim-current 737770d03e6f22108ac9acb89def79655fffbafbfc4fe7082f43a3bb40
_ /bin/bash ./condor_exec.exe -v std -name v3_2 -entry (MS_T2_US_Nebraska_Red_gwZ_whole -clientn
_ /bin/bash /var/1ib/condor/execute/dir_729792/glide_McAkr7/main/condor_startup.sh glidein_c
P-I t _ /var/1ib/condor/execute/dir_729792/glide_McAkr7/main/condor/sbin/condor_master -f -pid
I O _ condor_procd -A /var/lib/condor/execute/dir_729792/glide_McAkr7/log/procd_address
_ condor_startd -f
_ condor_starter -f -a slotl_1 vocms@31l.cern.ch
S' I 't | _ /usr/libexec/singularity/sexec /srv/.osgvo-user-job-wrapper.sh /srv/condor
Ingu arl y I _ /usr/libexec/singularity/sexec /srv/.osgvo-user-job-wrapper.sh /srv/col
I _ /bin/bash /srv/condor_exec.exe pdmvserv_task_EGM-PhaseISpringl7wmL
I _ python2 Startup.py
I _ /bin/bash /srv/job/WMTaskSpace/cmsRunl/cmsRunl-main.sh sl
I _ cmsRun -j FrameworkJobReport.xml PSet.py
_ condor_starter -f -a slotl_8 vocms@31l.cern.ch
| _ /usr/libexec/singularity/sexec /srv/.osgvo-user-job-wrapper.sh /srv/condor
I _ /usr/libexec/singularity/sexec /srv/.osgvo-user-job-wrapper.sh /srv/co
I _ /bin/bash /srv/condor_exec.exe pdmvserv_task_EGM-PhaseISpringl7wmL
I
I
I

Payload

Singularity

_ python2 Startup.py
_ /bin/bash /srv/job/WMTaskSpace/cmsRunl/cmsRunl-main.sh sl
_ cmsRun -j FrameworkJobReport.xml PSet.py

Payload

View From the Pllot

Pilot

Singularity
Payload

Singularity
Payload

No visibility into the host OS!

_ /bin/bash ./condor_exec.exe -v std -name v3_2 -entry (MS_T2_US_Nebraska_Red_gw2_whole -clientn
_ /bin/bash /var/1ib/condor/execute/dir_729792/glide_McAkr7/main/condor_startup.sh glidein_c
_ /var/1ib/condor/execute/dir_729792/glide_McAkr7/main/condor/sbin/condor_master -f -pid
_ condor_procd -A /var/lib/condor/execute/dir_729792/glide_McAkr7/log/procd_address
_ condor_startd -f
_ condor_starter -f -a slotl_1 vocms@31l.cern.ch

_ /usr/libexec/singularity/sexec /srv/.osgvo-user-job-wrapper.sh /srv/condor
_ /usr/libexec/singularity/sexec /srv/.osgvo-user-job-wrapper.sh /srv/co
_ /bin/bash /srv/condor_exec.exe pdmvserv_task_EGM-PhaseISpringl7wmLl
_ pythonZ2 Startup.py
_ /bin/bash /srv/job/WMTaskSpace/cmsRunl/cmsRunl-main.sh sl
_ cmsRun -j FrameworkJobReport.xml PSet.py

_ condor_starter -f -a slotl_8 vocms@31l.cern.ch

_ /usr/libexec/singularity/sexec /srv/.osgvo-user-job-wrapper.sh /srv/condor
_ /usr/libexec/singularity/sexec /srv/.osgvo-user-job-wrapper.sh /srv/co
_ /bin/bash /srv/condor_exec.exe pdmvserv_task_EGM-PhaseISpringl7wmL
_ pythonZ2 Startup.py
_ /bin/bash /srv/job/WMTaskSpace/cmsRunl/cmsRunl-main.sh sl
_ cmsRun -j FrameworkJobReport.xml PSet.py

View From the Payloao

User jobs are isolated from each other,
but it’s still a familiar OS environment

_ /bin/bash /srv/condor_exec.exe pdmvserv_task_EGM-PhaseISpringl7wmL
_ pythonZ2 Startup.py
_ /bin/bash /srv/job/WMTaskSpace/cmsRunl/cmsRunl-main.sh sl
_ cmsRun -j FrameworkJobReport.xml PSet.py

Payload

On Image Distribution...

« Docker images are a list of /ayers, each a tarball.

e DockerHub limitis 10GB. In practice, ranges of 500MB (minimal image,
caring users) to 4GB (large scientific organization) are common.

e Singularity has three image formats:
* Native format: raw filesystem image, loopback mounted. Large - 10GB.

e SquashFS-based compressed image. Slightly smaller than Docker (stays
compressed on disk).

« Simple chroot directory.
- How does one deliver these to thousands of worker nodes?

e On OSG, we do this by distributing the chroot directory via CVMFS.

Integration with OSG Users

« OSG VOs can request a certain Docker image to be replicated to CVMFES by
sending a pull request against the official repo:

 https://github.com/opensciencegrid/cvmis-singularity-sync

o OSG Staff will verify this request originated from an OSG VO (basically,
someone needs to sign the AUP).

« After initial approval, subsequent image updates are auto-sync’'d to CVMFS.

« OSG VO will automatically select an OS image if no container is selected,;
otherwise, user can specify that containers are required and which CVMFS

image to use.

« To see how OSG exposes this functionality to users, see: https://go.unl.edu/
0sg-singularity

https://github.com/opensciencegrid/cvmfs-singularity-sync
https://go.unl.edu/osg-singularity
https://go.unl.edu/osg-singularity

Singularity around town

e Some of the heaviest users of Singularity are on the OSG:
o Currently, CMS launches about 1M containers / week.

e OSG VO has launched 30M containers since mid-
February.

o At several large NSF supercomputing sites: SDSC, TACC.

 Popular across a range of HPC sites (med centers,

university computing centers, big labs), which was
Singularity’s original niche.

OSG Ramp-up

Instances/Day

800,000
600,000

400,000

Instances

200,000 -

0
Feb-12 Feb-26 Mar-12 Mar-26 Apr-9 Apr-23 May-7 May-21

Day

CMS Ramp-up

450,000
400,000
350,000
300,000

250,000

200,000

150,000

100,000

o Tl |
.I ||.|| |I|||||||| I i

2017-03-19 2017-04-02 2017-04-16 2017-04-30 2017-05-14 2017-05-28

=]

Whodunnit”?

e glexec keeps all traceability data on site. If you want to know who
used worker node X at time Y, simply view your logs!

 Observation: glexec is a communication channel between the
VO and site.

e By setting environment variables to point at an X509 proxy when

iInvoking glexec, the VO is telling us the given user is associated
with the executable.

e Since glexec is not widely used by VOs, in reality most sites will
need to ask the VO to trace resource usage. Not CMS at FNAL!

 FNAL request: Can we keep site-level traceability when using
Singularity?

Traceabillity with
HTCondor-CE

 The HTCondor-CE provides a mechanism for running pilots to
advertise current status to the CE.

e GlideinWMS automatically sends pilot ads to the CE. Can see
these with condor ce status.

 IDEA: Can we use this communication channel for tracebility”
 Yes! CMS already sends payload user information to the CE.
e Current HTCondor release (8.6.3) allows us to log the payload.

o Subsequent HTCondor-CE release (2.2.17) will support
traceability. Hopefully, FNAL can then switch to Singularity.

So Where Are We”

e Singularity deployments are starting to occur at sites.
RPM is installed at most US Tier-2 sites.

 OSG pilots have used Singularity since February;
typically 50-80% of the opportunistic pool has
Singularity enabled.

 CMS pilots have used Singularity since mid-March
for volunteer sites; on by default in production since
mid-April!

 OSG strongly recommends Singularity 2.2.1 from EPEL.

Conclusions

e Singularity is another container technology in our toolbox.
* Different set of tradeoffs than Docker:

e |.e., setuid binary but no system service.

* Currently, most popular where HTCondor runs as non-root.

* Interface will be a work-in-progress during 2017. Currently,
completely managed/implemented by sysadmin.

« CMS and OSG utilize Singularity as a mechanism for isolation
and OS portability.

