
Singularity and OSG
Brian Bockelman

WLCG Workshop, June 2017

What problems are we
solving?

• Isolation: We launch arbitrary user code (“payload”) that shouldn’t have
access to our wrapper scripts (“pilot”). Specifically:

• File isolation: pilot determines what files the payloads can read and write.

• Process isolation: payload can only interact with (see, signal, trace) its
own processes.

• These are simple kinds of isolation. Others (e.g., kernel isolation,
network isolation) are less important!

• glexec replacement: Retire our particularly problematic current solution to
isolation. Niche and expensive.

• Homogeneous / portable OS environments: Make user OS environment as
minimal and identical as possible!

Old Adventures in Isolation and Traceability:  
MUPJ and glexec

• The WLCG experiments have heavily used the Multi-User Pilot Job (MUPJ) model:

• A generic “pilot job,” owned by the experiment, is submitted to the site batch
system.

• This pilot job launches one or more scientific payload jobs. This is where the
“actual computing” is done!

• Each payload job belongs to an individual user.

• We need isolation so user payloads cannot interact with each other or the pilot.
(No credential stealing!!).

• We need traceability so sites can identify who uses a computing resource at any
given time.

• Traditionally, isolation and traceability is provided by the batch system: launches
each user’s jobs as a separate Unix user.

Introducing: Singularity
• Singularity is a container solution tailored for the HPC

use case.

• It allows for a portable of OS runtime
environments.

• It can provide isolation needed by our users.

• Simple isolation: Singularity does not do resource
management (i.e., limiting memory use), leaving that
to the batch system.

• Operations: No daemons, no UID switching; no
edits to config file needed. “Install RPM and done.”

• Goal: User has no additional privileges by being
inside container. E.g., disables all setuid binaries
inside the container.

http://singularity.lbl.gov

http://singularity.lbl.gov

Yet Another Container
Syndrome

• “But we already support Docker! Why do we need
Yet Another Container?”

• Singularity support works even if invoker runs as
non-root (i.e., glideinWMS).

• Singularity does not require any additional system
services / daemons. Tradeoff: requires setuid.

• Works inside Docker — important for sites that
already invest heavily in Docker (like mine!).

IMPORTANT: 
Singularity provides a path

to non-setuid isolation
And there was great rejoicing!

🎉

Why Docker?
• There remain a good number of reasons to use Docker:

• Docker implements additional resource management and
isolation mechanisms.

• Built-in image distribution mechanism.

• Wider acceptance / larger ecosystem / more mature.

• To each their own: pick the correct technology to fit your site.

• For example, both technologies are built-in to HTCondor.

• Nebraska uses both: Docker for site batch system, Singularity for
pilots inside the batch system.

View From the Worker Node
Site Batch System

Docker

Pilot

Singularity

Singularity

Payload

Payload

View From the Pilot

Pilot

Singularity

Singularity

Payload

Payload

No visibility into the host OS!

View From the Payload

Payload

User jobs are isolated from each other,
but it’s still a familiar OS environment

On Image Distribution…
• Docker images are a list of layers, each a tarball.

• DockerHub limit is 10GB. In practice, ranges of 500MB (minimal image,
caring users) to 4GB (large scientific organization) are common.

• Singularity has three image formats:

• Native format: raw filesystem image, loopback mounted. Large - 10GB.

• SquashFS-based compressed image. Slightly smaller than Docker (stays
compressed on disk).

• Simple chroot directory.

• How does one deliver these to thousands of worker nodes?

• On OSG, we do this by distributing the chroot directory via CVMFS.

Integration with OSG Users
• OSG VOs can request a certain Docker image to be replicated to CVMFS by

sending a pull request against the official repo:

• https://github.com/opensciencegrid/cvmfs-singularity-sync

• OSG Staff will verify this request originated from an OSG VO (basically,
someone needs to sign the AUP).

• After initial approval, subsequent image updates are auto-sync’d to CVMFS.

• OSG VO will automatically select an OS image if no container is selected;
otherwise, user can specify that containers are required and which CVMFS
image to use.

• To see how OSG exposes this functionality to users, see: https://go.unl.edu/
osg-singularity

https://github.com/opensciencegrid/cvmfs-singularity-sync
https://go.unl.edu/osg-singularity
https://go.unl.edu/osg-singularity

Singularity around town
• Some of the heaviest users of Singularity are on the OSG:

• Currently, CMS launches about 1M containers / week.

• OSG VO has launched 30M containers since mid-
February.

• At several large NSF supercomputing sites: SDSC, TACC.

• Popular across a range of HPC sites (med centers,
university computing centers, big labs), which was
Singularity’s original niche.

OSG Ramp-up

CMS Ramp-up

Whodunnit?
• glexec keeps all traceability data on site. If you want to know who

used worker node X at time Y, simply view your logs!

• Observation: glexec is a communication channel between the
VO and site.

• By setting environment variables to point at an X509 proxy when
invoking glexec, the VO is telling us the given user is associated
with the executable.

• Since glexec is not widely used by VOs, in reality most sites will
need to ask the VO to trace resource usage. Not CMS at FNAL!

• FNAL request: Can we keep site-level traceability when using
Singularity?

Traceability with 
HTCondor-CE

• The HTCondor-CE provides a mechanism for running pilots to
advertise current status to the CE.

• GlideinWMS automatically sends pilot ads to the CE. Can see
these with condor_ce_status.

• IDEA: Can we use this communication channel for tracebility?

• Yes! CMS already sends payload user information to the CE.

• Current HTCondor release (8.6.3) allows us to log the payload.

• Subsequent HTCondor-CE release (2.2.1?) will support
traceability. Hopefully, FNAL can then switch to Singularity.

So Where Are We?
• Singularity deployments are starting to occur at sites.

RPM is installed at most US Tier-2 sites.

• OSG pilots have used Singularity since February;
typically 50-80% of the opportunistic pool has
Singularity enabled.

• CMS pilots have used Singularity since mid-March
for volunteer sites; on by default in production since
mid-April!

• OSG strongly recommends Singularity 2.2.1 from EPEL.

Conclusions
• Singularity is another container technology in our toolbox.

• Different set of tradeoffs than Docker:

• I.e., setuid binary but no system service.

• Currently, most popular where HTCondor runs as non-root.

• Interface will be a work-in-progress during 2017. Currently,
completely managed/implemented by sysadmin.

• CMS and OSG utilize Singularity as a mechanism for isolation
and OS portability.

