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What problems are we 
solving?

• Isolation: We launch arbitrary user code (“payload”) that shouldn’t have 
access to our wrapper scripts (“pilot”).  Specifically: 

• File isolation: pilot determines what files the payloads can read and write. 

• Process isolation: payload can only interact with (see, signal, trace) its 
own processes. 

• These are simple kinds of isolation.  Others (e.g., kernel isolation, 
network isolation) are less important! 

• glexec replacement: Retire our particularly problematic current solution to 
isolation.  Niche and expensive. 

• Homogeneous / portable OS environments: Make user OS environment as 
minimal and identical as possible!



Old Adventures in Isolation and Traceability:  
MUPJ and glexec

• The WLCG experiments have heavily used the Multi-User Pilot Job (MUPJ) model: 

• A generic “pilot job,” owned by the experiment, is submitted to the site batch 
system. 

• This pilot job launches one or more scientific payload jobs.  This is where the 
“actual computing” is done! 

• Each payload job belongs to an individual user. 

• We need isolation so user payloads cannot interact with each other or the pilot.  
(No credential stealing!!). 

• We need traceability so sites can identify who uses a computing resource at any 
given time. 

• Traditionally, isolation and traceability is provided by the batch system: launches 
each user’s jobs as a separate Unix user.



Introducing: Singularity
• Singularity is a container solution tailored for the HPC 

use case. 

• It allows for a portable of OS runtime 
environments. 

• It can provide isolation needed by our users. 

• Simple isolation: Singularity does not do resource 
management (i.e., limiting memory use), leaving that 
to the batch system. 

• Operations:  No daemons, no UID switching; no 
edits to config file needed.  “Install RPM and done.” 

• Goal: User has no additional privileges by being 
inside container.  E.g., disables all setuid binaries 
inside the container.

http://singularity.lbl.gov

http://singularity.lbl.gov


Yet Another Container 
Syndrome

• “But we already support Docker!  Why do we need 
Yet Another Container?” 

• Singularity support works even if invoker runs as 
non-root (i.e., glideinWMS). 

• Singularity does not require any additional system 
services / daemons.  Tradeoff: requires setuid. 

• Works inside Docker — important for sites that 
already invest heavily in Docker (like mine!).



IMPORTANT: 
Singularity provides a path 

to non-setuid isolation
And there was great rejoicing!

🎉



Why Docker?
• There remain a good number of reasons to use Docker: 

• Docker implements additional resource management and 
isolation mechanisms. 

• Built-in image distribution mechanism. 

• Wider acceptance / larger ecosystem / more mature. 

• To each their own: pick the correct technology to fit your site. 

• For example, both technologies are built-in to HTCondor. 

• Nebraska uses both: Docker for site batch system, Singularity for 
pilots inside the batch system.
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No visibility into the host OS!



View From the Payload

Payload

User jobs are isolated from each other, 
but it’s still a familiar OS environment



On Image Distribution…
• Docker images are a list of layers, each a tarball. 

• DockerHub limit is 10GB.  In practice, ranges of 500MB (minimal image, 
caring users) to 4GB (large scientific organization) are common. 

• Singularity has three image formats: 

• Native format: raw filesystem image, loopback mounted.  Large - 10GB. 

• SquashFS-based compressed image.  Slightly smaller than Docker (stays 
compressed on disk). 

• Simple chroot directory.   

• How does one deliver these to thousands of worker nodes?

• On OSG, we do this by distributing the chroot directory via CVMFS.



Integration with OSG Users
• OSG VOs can request a certain Docker image to be replicated to CVMFS by 

sending a pull request against the official repo: 

• https://github.com/opensciencegrid/cvmfs-singularity-sync 

• OSG Staff will verify this request originated from an OSG VO (basically, 
someone needs to sign the AUP). 

• After initial approval, subsequent image updates are auto-sync’d to CVMFS. 

• OSG VO will automatically select an OS image if no container is selected; 
otherwise, user can specify that containers are required and which CVMFS 
image to use. 

• To see how OSG exposes this functionality to users, see: https://go.unl.edu/
osg-singularity 

https://github.com/opensciencegrid/cvmfs-singularity-sync
https://go.unl.edu/osg-singularity
https://go.unl.edu/osg-singularity


Singularity around town
• Some of the heaviest users of Singularity are on the OSG: 

• Currently, CMS launches about 1M containers / week. 

• OSG VO has launched 30M containers since mid-
February. 

• At several large NSF supercomputing sites: SDSC, TACC. 

• Popular across a range of HPC sites (med centers, 
university computing centers, big labs), which was 
Singularity’s original niche.



OSG Ramp-up



CMS Ramp-up



Whodunnit?
• glexec keeps all traceability data on site.  If you want to know who 

used worker node X at time Y, simply view your logs! 

• Observation: glexec is a communication channel between the 
VO and site. 

• By setting environment variables to point at an X509 proxy when 
invoking glexec, the VO is telling us the given user is associated 
with the executable. 

• Since glexec is not widely used by VOs, in reality most sites will 
need to ask the VO to trace resource usage.  Not CMS at FNAL! 

• FNAL request: Can we keep site-level traceability when using 
Singularity?



Traceability with 
HTCondor-CE

• The HTCondor-CE provides a mechanism for running pilots to 
advertise current status to the CE. 

• GlideinWMS automatically sends pilot ads to the CE.  Can see 
these with condor_ce_status. 

• IDEA: Can we use this communication channel for tracebility? 

• Yes!  CMS already sends payload user information to the CE. 

• Current HTCondor release (8.6.3) allows us to log the payload. 

• Subsequent HTCondor-CE release (2.2.1?) will support 
traceability.  Hopefully, FNAL can then switch to Singularity.



So Where Are We?
• Singularity deployments are starting to occur at sites.  

RPM is installed at most US Tier-2 sites. 

• OSG pilots have used Singularity since February; 
typically 50-80% of the opportunistic pool has 
Singularity enabled. 

• CMS pilots have used Singularity since mid-March 
for volunteer sites; on by default in production since 
mid-April! 

• OSG strongly recommends Singularity 2.2.1 from EPEL.



Conclusions
• Singularity is another container technology in our toolbox. 

• Different set of tradeoffs than Docker: 

• I.e., setuid binary but no system service. 

• Currently, most popular where HTCondor runs as non-root. 

• Interface will be a work-in-progress during 2017.  Currently, 
completely managed/implemented by sysadmin. 

• CMS and OSG utilize Singularity as a mechanism for isolation 
and OS portability.


