

Use of containers at the RAL Tier-I

Andrew Lahiff

STFC Rutherford Appleton Laboratory

19th June, WLCG Workshop 2017, Manchester

Overview

- Introduction
- Batch system at RAL
 - use of containers, past & present
- Cluster managers
 - Mesos
 - Kubernetes

Introduction

- RAL hosts the UK's WLCG Tier-I centre
 - Provides computing & disk resources, tape for custodial storage of data
- Supports all 4 LHC experiments & others including
 - biomed, ENMR, ILC, MICE, LIGO, LSST, NA62, SNO+, T2K
- 2017 WLCG MoU committment
 - CPU: 212 kHS06 (24,000 cores)
 - Disk: 19 PB
 - Tape: 49 PB

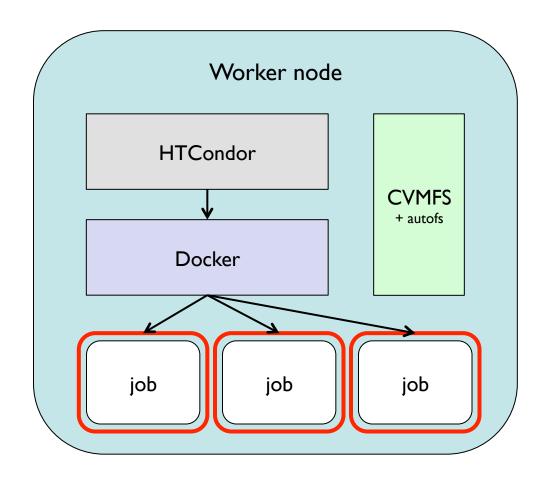
Batch system

- Long history of trying to isolate jobs in our batch system
 - protect the machine from jobs
 - protect one job from another
- Back when we used Torque/Maui, things were very simple
 - jobs ran with different user ids
 - jobs which used too much memory killed
 - jobs which used too much CPU or wall time killed
 - jobs could still do bad things
 - e.g. if a job tried to use all CPUs it could!

Batch system

- Since migrating to HTCondor in 2013, Linux kernel functionality improved our ability to isolate jobs
 - cgroups (CPU, memory, ...)
 - resource limits & monitoring
 - ensuring processes can't escape the batch system
 - PID namespaces
 - processes in a job can't see any other processes on the host
 - mount namespaces
 - /tmp, /var/tmp inside each job is unique
- This generally worked very well
 - but something was missing...

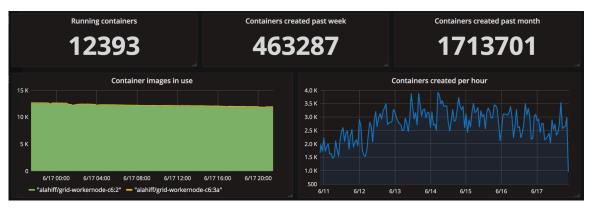
Batch system


- Limitation: all jobs use the same root filesystem as the host
 - i.e. jobs tied to the host OS
 - an SL6 host can only run SL6 jobs
 - software/OS dictated by majority of LHC experiments
 - if LHC experiments want to migrate to SL7 at different times, need to partition resources
 - what if other communities want something different?
 - it would be very good to get around this limitation
- Possible solution? HTCondor's named chroot functionality
 - specify a directory containing an alternative root filesystem
 - a bit awkward to use & never really took off

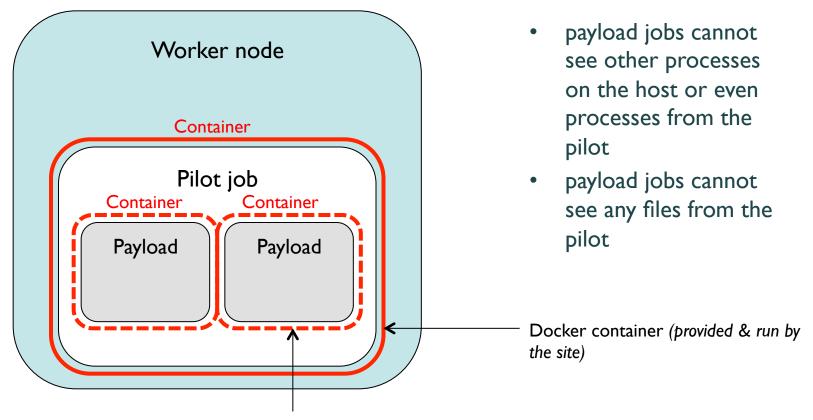
HTCondor Docker universe

- Docker universe
 - introduced in HTCondor 8.3.6 in June 2015
 - HTCondor runs each job in a Docker container
 - Docker makes it easy to create & manage images
 - successfully ran LHC jobs at RAL in 2015
 - jobs in SL6 containers on SL7 worker nodes
- (Some) features
 - can bind-mount directories/files from the host
 - useful for CVMFS, configuration files
 - all Linux capabilities dropped by default
 - needs to be disabled for jobs requiring glexec

HTCondor Docker universe

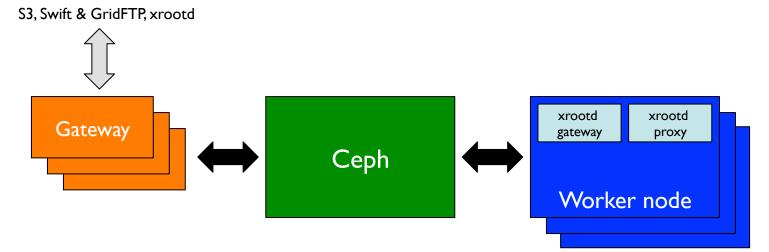

• A RAL SL7 worker node

- containers run as unprivileged pool account users
- users don't have access to the Docker daemon at all
- no way for users to specify arbitrary images via the Grid
- CVMFS available in containers using bind mounts (shared mount propagation)


HTCondor Docker universe

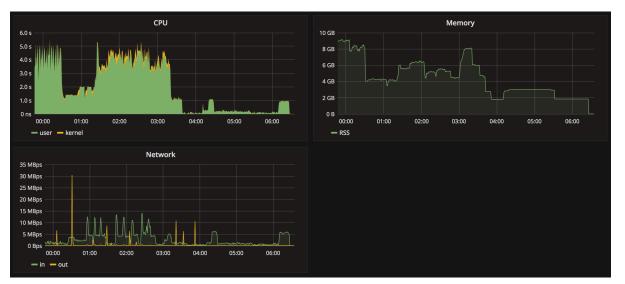
- This year we migrated fully to the Docker universe
 - all jobs run in containers on bare metal
 - migrated slowly over a period of a few months
 - all existing functionality preserved, e.g. glexec, machine job features, CPU accounting, ...
- Some statistics
 - ~400K containers per week
 - I.7M past month

Singularity


- Will provide Singularity in Centos 7 containers
 - allow VOs such as CMS to run payload jobs in containers

Singularity container (provided & run by the VO)

Worker nodes & storage


- Started rolling out xrootd Ceph gateways & proxies onto worker nodes
 - migrating from CASTOR to Ceph for disk-only storage
 - an important driver for migrating to SL7 worker nodes
 - jobs access data via the local gateways
 - highly scalable xrootd access to Ceph
 - xrootd daemons running in containers on each WN

11

Monitoring & traceability

• Containers give greater visibility into what each job is doing

Time series resource usage metrics per job, including network

170614 11:01:49 144 XrootdXeq: tatls011.5668:88@htcjob5609679_0_slot1_11_pid5408.ralworker pvt IP v4 login as atlasprod

170614 11:01:49 144 acc_Audit: tatls011.5668:88@htcjob5609679_0_slot1_11_pid5408.ralworker grant gsi atlasprod@htcjob5609679_0_slot1_11_pid5408.ralworker read atlas:scratchdisk/rucio/panda/ce/f1 /panda.0614095933.558317.lib._11488760.9783001038.lib.tgz

170614 11:01:59 144 XrootdXeq: tatls011.5668:88@htcjob5609679_0_slot1_11_pid5408.ralworker disc 0 :00:10

Local xrootd gateway access to storage by user & by job

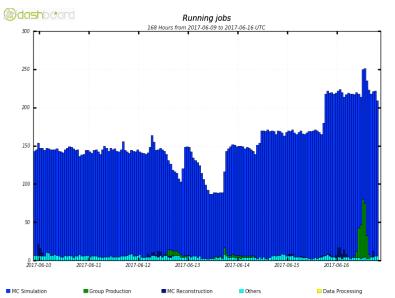
lcg1616.gridpp.rl.ac.uk

	\sim	_	
	C		

INBOUND			PORT	- #
HTCJob18146168_0	4157	51523	1	
HTCJob18146168_0_	4157	37155	1	
HTCJob18146168_0_		35191	1	
OUTBOUND			PORT	- #
vocms0806.cern.ch (1	97)	9684	5	
cmssrv258.fnal.gov (1	232)	9684	5	
vocms0808.cern.ch (1	34)	9686	2	
cmssrv221.fnal.gov (1	128)	9686	2	
vocms0195.cern.ch (1	7)	4080	2	
atlas-squid.gridpp.rl.a	<u>6.183</u>	3128	2	
HTCJob18146168_0_	4157	51523	1	
vocms0311.cern.ch (1	<u>44)</u>	4080	1	
HTCJob18146168_0_	4157	37155	1	
HTCJob18146168_0_	4157	35191	1	
atlas-squid.gridpp.rl.a	<u>6.183</u>	3128	1	
atlas-squid.gridpp.rl.a	<u>6.183</u>	3128	1	
dc029.pic.es (193.109	:	21040	1	
xrootd01-cmst1.pic.es	7 <u>2.13</u>	1095	1	
xrootd-cmst1-door.pic	.172	1094	1	
xrootd-cms.infn.it (19		1094	1	
PROCESSES	PID	- CPU	MEN	IORY
cmsRun 2988 3.15			6 1.1 GB	
cmsRun	2988	3.15 %	1.1	I GB
condor_startd	2421	0.03 %	6.4	MB
<u>cmsRun</u>	61747	0.03 %	282.9	MB
condor_procd	2421	0.00 %	1.4	MB
		+22 🔻		

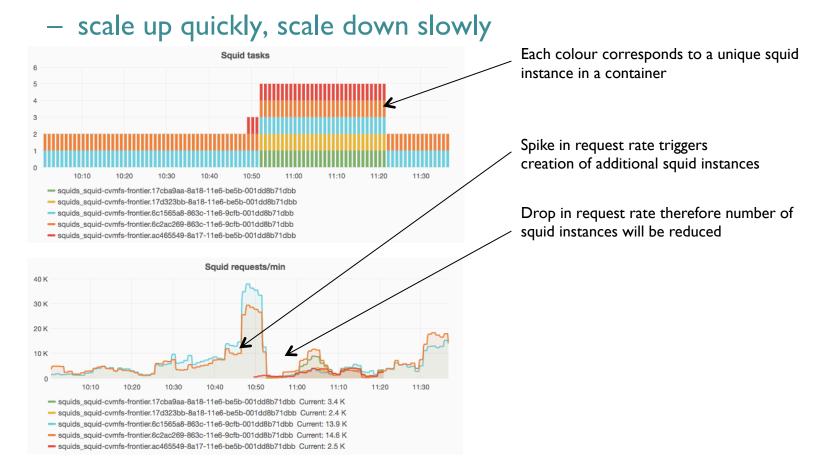
Network connections per job

Towards the future


- Since on worker nodes we're
 - running jobs in containers
 - running xrootd servers in containers
- Why not just run everything in containers?
 - just doing this on its own wouldn't give many benefits
- However, if the containers are managed by schedulers
 - instead of having just a dedicated HTCondor batch farm, the same nodes could be used for
 - Big Data, HPC, cloud hypervisors, ...
 - gain lots of more flexibility, help support a wider range of activities
 - 'new' communities becoming more and more important

Mesos

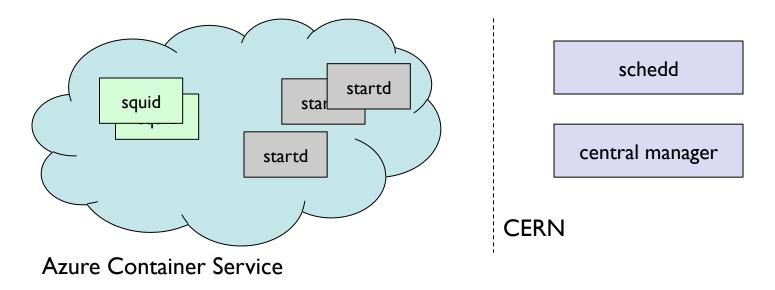
- Mesos is a cluster manager which
 - enables a large group of machines to appear as a single pool of resources
 - allows you to have multiple schedulers sharing the same resources
- Have had a Mesos cluster running for around 2 years
 - varied in size from 256 to over 7000 cores (currently 352)
- What has it being used for?
 - originally concentrated on investigating the benefits of container orchestration for long-runnng services
 - more recently looking at providing flexible computing infrastructure


Mesos

- Last year did tests running > 5000 cores of jobs from all LHC experiments
 - startds + CVMFS running in containers on Mesos joining our production HTCondor pool
- Currently an improved version is running real ATLAS jobs
 - CVMFS provided by (privileged) containers
 - startds in unprivileged containers
 join a CERN HTCondor pool

Mesos

• Example: number of squid instances changing based on load (request rate)



Kubernetes as an abstraction layer

- Kubernetes is an open-source container cluster manager which can be run anywhere
 - on-premises
 - "as a service" on public clouds (natively or via 3rd parties)
- Using it as an abstraction to enable portability between
 - on-premises resources
 - multiple public clouds
- Benefits compared to traditional ways of using public clouds
 - Don't need to worry about handling different cloud APIs
 - Run a single command to create an elastic, self-healing Grid site
 - on a single Kubernetes cluster
 - on multiple clusters around the world (via Kubernetes federations)

Kubernetes as an abstraction layer

- Did initial testing with CMS CRAB3 analysis jobs
 RAL, Google (GKE), Azure (ACS), AWS (via StackPointCloud)
- Now running ATLAS production jobs on Azure
 - using "vacuum" model for independently creating startds which join a HTCondor pool at CERN

Summary

- Containers are being used a lot at RAL in production
 - migrated our HTCondor batch system to run all jobs in Docker containers
 - have started rolling out xrootd gateways to Ceph in containers on worker nodes
- Other efforts at RAL involving containers
 - providing more flexible computing infrastructure
 - making it easier to use public clouds

For more information

• HTCondor

- https://indico.cern.ch/event/611296/contributions/2608192/attachments/ 1469768/2280587/EuroHTCondor_ALahiff.pdf
- Mesos
 - https://indico.cern.ch/event/384358/contributions/909266/attachments/ I 170757/1690077/HEPiX2015_MesosAtRAL.pdf
 - https://indico.cern.ch/event/505613/contributions/2227447/attachments/ 1347485/2041461/Oral-531.pdf

• Kubernetes

 http://indico4.twgrid.org/indico/event/2/session/45/contribution/143/ material/slides/0.ppt