
Use of containers at the RAL Tier-1

Andrew Lahiff
STFC Rutherford Appleton Laboratory

19th June, WLCG Workshop 2017, Manchester

Overview
•  Introduction
•  Batch system at RAL

–  use of containers, past & present

•  Cluster managers
–  Mesos

–  Kubernetes

2

Introduction
•  RAL hosts the UK’s WLCG Tier-1 centre

–  Provides computing & disk resources, tape for custodial
storage of data

•  Supports all 4 LHC experiments & others including
–  biomed, ENMR, ILC, MICE, LIGO, LSST, NA62, SNO+,

T2K

•  2017 WLCG MoU committment
–  CPU: 212 kHS06 (24,000 cores)
–  Disk: 19 PB

–  Tape: 49 PB

3

Batch system
•  Long history of trying to isolate jobs in our batch system

–  protect the machine from jobs

–  protect one job from another

•  Back when we used Torque/Maui, things were very simple
–  jobs ran with different user ids

–  jobs which used too much memory killed

–  jobs which used too much CPU or wall time killed
–  jobs could still do bad things

•  e.g. if a job tried to use all CPUs – it could!

4

Batch system
•  Since migrating to HTCondor in 2013, Linux kernel

functionality improved our ability to isolate jobs
–  cgroups (CPU, memory, ...)

•  resource limits & monitoring

•  ensuring processes can’t escape the batch system

–  PID namespaces
•  processes in a job can’t see any other processes on the host

–  mount namespaces
•  /tmp, /var/tmp inside each job is unique

•  This generally worked very well
–  but something was missing...

5

Batch system
•  Limitation: all jobs use the same root filesystem as the

host
–  i.e. jobs tied to the host OS

•  an SL6 host can only run SL6 jobs

•  software/OS dictated by majority of LHC experiments
•  if LHC experiments want to migrate to SL7 at different times,

need to partition resources
•  what if other communities want something different?

–  it would be very good to get around this limitation

•  Possible solution? HTCondor’s named chroot functionality
–  specify a directory containing an alternative root filesystem

–  a bit awkward to use & never really took off

6

HTCondor Docker universe
•  Docker universe

–  introduced in HTCondor 8.3.6 in June 2015

–  HTCondor runs each job in a Docker container
•  Docker makes it easy to create & manage images

–  successfully ran LHC jobs at RAL in 2015
•  jobs in SL6 containers on SL7 worker nodes

•  (Some) features
–  can bind-mount directories/files from the host

•  useful for CVMFS, configuration files

–  all Linux capabilities dropped by default
•  needs to be disabled for jobs requiring glexec

7

HTCondor Docker universe
•  A RAL SL7 worker node

Worker node

HTCondor

Docker

job jobjob

CVMFS
+ autofs

•  containers run as
unprivileged pool
account users

•  users don’t have
access to the Docker
daemon at all

•  no way for users to
specify arbitrary
images via the Grid

•  CVMFS available in
containers using bind
mounts (shared mount
propagation)

8

HTCondor Docker universe
•  This year we migrated fully to the Docker universe

–  all jobs run in containers on bare metal

–  migrated slowly over a period of a few months

–  all existing functionality preserved, e.g. glexec, machine job
features, CPU accounting, ...

•  Some statistics
–  ~400K containers per week

–  1.7M past month

9

Singularity
•  Will provide Singularity in Centos 7 containers

–  allow VOs such as CMS to run payload jobs in containers

Worker node

Pilot job

Payload Payload

Container

Container Container

•  payload jobs cannot
see other processes
on the host or even
processes from the
pilot

•  payload jobs cannot
see any files from the
pilot

Docker container (provided & run by
the site)

Singularity container (provided & run by the VO) 10

Worker nodes & storage
•  Started rolling out xrootd Ceph gateways & proxies onto

worker nodes
–  migrating from CASTOR to Ceph for disk-only storage

–  an important driver for migrating to SL7 worker nodes
•  jobs access data via the local gateways

•  highly scalable xrootd access to Ceph

–  xrootd daemons running in containers on each WN

Gateway
Gateway

Ceph
Gateway

Worker node

xrootd
gateway

xrootd
proxy

S3, Swift & GridFTP, xrootd

11

Monitoring & traceability
•  Containers give greater visibility into what each job is doing

Time series resource usage metrics per job, including network

Network connections per job
Local xrootd gateway access to storage by user & by job

12

Towards the future
•  Since on worker nodes we’re

–  running jobs in containers

–  running xrootd servers in containers

•  Why not just run everything in containers?
–  just doing this on its own wouldn’t give many benefits

•  However, if the containers are managed by schedulers
–  instead of having just a dedicated HTCondor batch farm,

the same nodes could be used for
•  Big Data, HPC, cloud hypervisors, ...

–  gain lots of more flexibility, help support a wider range of
activities

•  ‘new’ communities becoming more and more important

13

Mesos
•  Mesos is a cluster manager which

–  enables a large group of machines to appear as a single pool
of resources

–  allows you to have multiple schedulers sharing the same
resources

•  Have had a Mesos cluster running for around 2 years
–  varied in size from 256 to over 7000 cores (currently 352)

•  What has it being used for?
–  originally concentrated on investigating the benefits of

container orchestration for long-runnng services
–  more recently looking at providing flexible computing

infrastructure

14

Mesos
•  Last year did tests running > 5000 cores of jobs from all

LHC experiments
–  startds + CVMFS running in containers on Mesos joining

our production HTCondor pool

•  Currently an improved version is running real ATLAS jobs
–  CVMFS provided by (privileged)
 containers

–  startds in unprivileged containers

 join a CERN HTCondor pool

15

Mesos
•  Example: number of squid instances changing based on

load (request rate)
–  scale up quickly, scale down slowly

Spike in request rate triggers
creation of additional squid instances

Drop in request rate therefore number of
squid instances will be reduced

16

Each colour corresponds to a unique squid
instance in a container

Kubernetes as an abstraction layer
•  Kubernetes is an open-source container cluster manager

which can be run anywhere
–  on-premises

–  “as a service” on public clouds (natively or via 3rd parties)

•  Using it as an abstraction to enable portability between
–  on-premises resources

–  multiple public clouds

•  Benefits compared to traditional ways of using public clouds
–  Don’t need to worry about handling different cloud APIs

–  Run a single command to create an elastic, self-healing Grid site
•  on a single Kubernetes cluster

•  on multiple clusters around the world (via Kubernetes federations)

17

Kubernetes as an abstraction layer
•  Did initial testing with CMS CRAB3 analysis jobs

–  RAL, Google (GKE), Azure (ACS), AWS (via StackPointCloud)

•  Now running ATLAS production jobs on Azure
–  using “vacuum” model for independently creating startds which

join a HTCondor pool at CERN

Thanks to Microsoft for an Azure Research Award

schedd

central manager

Azure Container Service

CERN

squid
squid startd

startd

startd

18

Summary
•  Containers are being used a lot at RAL in production

–  migrated our HTCondor batch system to run all jobs in
Docker containers

–  have started rolling out xrootd gateways to Ceph in
containers on worker nodes

•  Other efforts at RAL involving containers
–  providing more flexible computing infrastructure

–  making it easier to use public clouds

19

For more information
•  HTCondor

–  https://indico.cern.ch/event/611296/contributions/2608192/attachments/
1469768/2280587/EuroHTCondor_ALahiff.pdf

•  Mesos
–  https://indico.cern.ch/event/384358/contributions/909266/attachments/

1170757/1690077/HEPiX2015_MesosAtRAL.pdf

–  https://indico.cern.ch/event/505613/contributions/2227447/attachments/
1347485/2041461/Oral-531.pdf

•  Kubernetes
–  http://indico4.twgrid.org/indico/event/2/session/45/contribution/143/

material/slides/0.ppt

20

