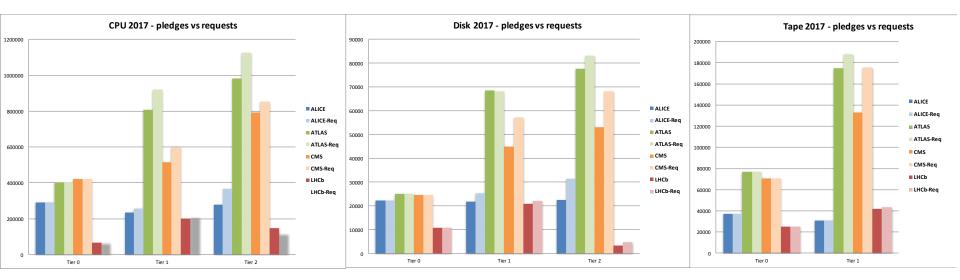
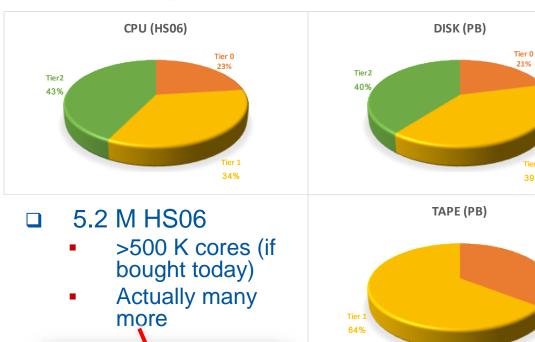

WLCG Workshop – Introduction


Ian Collier, on behalf of Ian Bird WLCG Workshop Manchester, 19th June 2017

WLCG Collaboration

2017 Pledge situation


Not all is deployed yet for 2017 - a few delays Full resources expected by end of this month

[Light colours: Request; darker colours: pledge]

WLCG Workshop, Manchester

Pledged resources 2017

Rostov

Running job 401560 Active CPU cores: 700294 Transfer rate: 14.51 GiB/sec KHARKUV-KIPT-LUG2-UA-ISMA

ARC/UA-BITP

985 PB Storage

- 395 PB disk
- 590 PB tape

21%

Tier 1

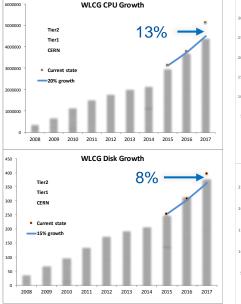
39%

Tier 0

36%

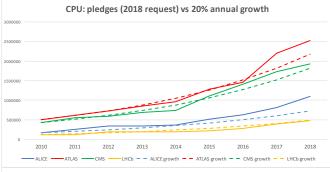
LHC Performance

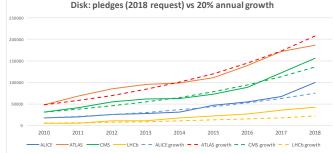
- In 2016, the LHC availability (live time) was much greater than anticipated, leading to some 40% more data generated than planned
- □ This had implications for resource needs in 2016, and in 2017 assuming equally high availability and the increased luminosity
- At the October RRB, (some) funding agencies agreed that they would help on a "best effort" basis with more resources, but pledges would not be increased
 - LHCC proposed to review the mitigation measures the experiments and WLCG had taken to minimise the additional requests
 - Really mandated that we remain within a flat budget "no matter what" (my phrasing)

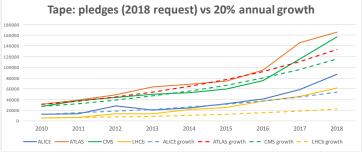


Mitigation measures reviewed by LHCC

- In February the LHCC reviewed the measures taken by the experiments to mitigate the shortfall in resources relative to the exceptional LHC performance
- □ Concluded that: (CERN-LHCC-2017-004)
 - "The LHCC congratulates the LCG and experiments on the successful implementation of mitigation measures to cope with the increased data load."
 - "The LHCC notes that the margins to reduce the resource usage in the short term without impact on physics have been exhausted."

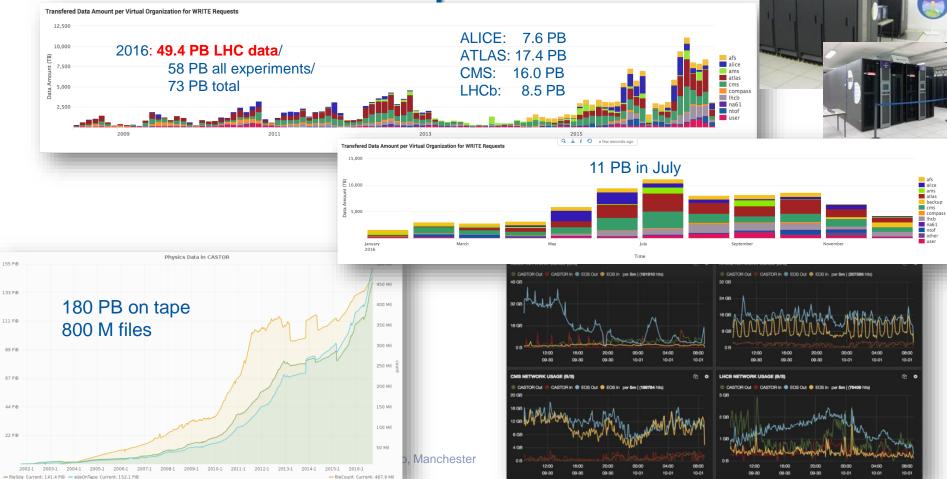


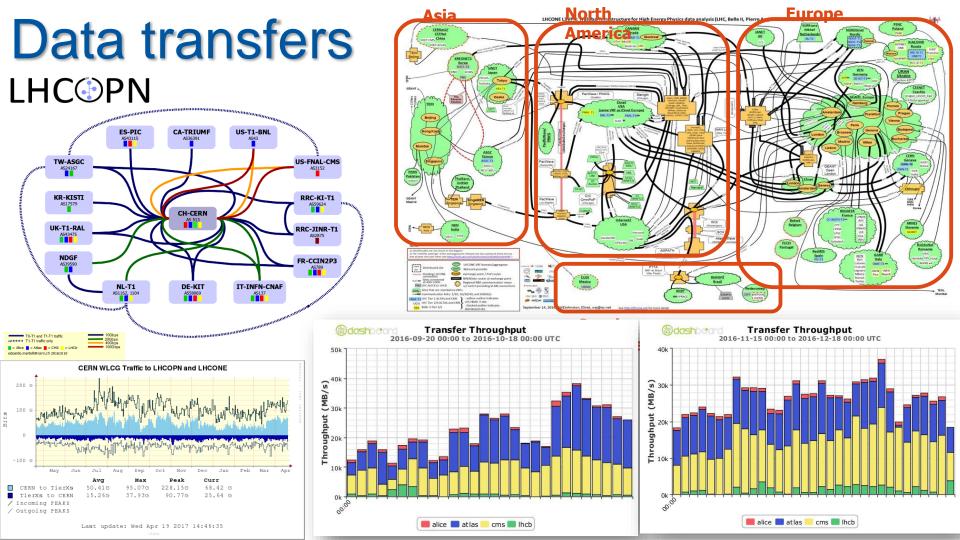

Comments on flat budgets



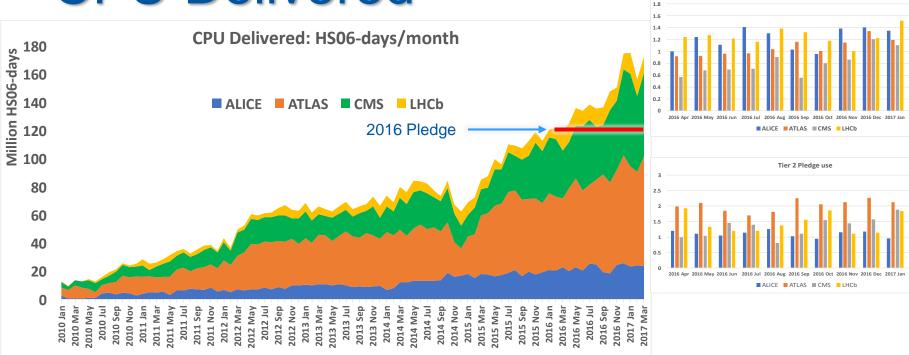
WLCG

ERN




Extrapolations from 2010:

- Ignore no investment in 2013,14
- Deviations from "flat budget" are generally not enormous, and are corrected
- Jump in 2017 LHC performance
- Tape needs still increase
- We need to clarify what is meant by flat budgets:
 - We assume: constant budget/investment even in long shutdown years
 - This did not happen in LS1


Data in 2016 - updated

лж

CPU Delivered

New peak: ~180 M HS06-days/month ~ 600 k cores continuous

WLCG Workshop, Manchester

Tier 0/1 Pledge use

Resource pledging process

NB. This is modified (by RRB) wrt the MoU ideas

□ In year n:

- C-RSG review in Spring to confirm requests for year n+1
 - Needed as procurements at this scale take ~1 year
- C-RSG review in Autumn 1st look at requests for year n+2
 - Often also "adjustments" requested for year n+1
 - But this is too late to affect (most) procurements
 - Also FA's confirm pledges for year n+1
- □ Initially had a 3-5 year outlook, but this is impractical:
 - Requests difficult to foresee that far ahead (LHC conditions, schedule, etc. usually not confirmed until Chamonix of the running year)
 - Budgets mostly not known on that timescale: FA's do not discuss budget outlook
- □ For Run 2; in 2013 we made an outlook for 2015, 2016, 2017

Community White Paper

- Mentioned at previous RRB
- Goal to have a Community White Paper (CWP) on overall strategy & roadmap for software/computing for HL-LHC
 - Deliverable of an NSF-funded pre-project
 - Also takes account of Belle-II, ILC, neutrinos, etc.
- □ To be delivered by summer 2017
- □ Kick-off workshop held in San Diego 23-26 Jan
- □ Final workshop next week in Annecy
- Will be used as input for the LHCC report later this year, developing roadmap towards TDR for HL-LHC computing in 2020

HL-LHC Computing TDR

- Agreed with LHCC to produce TDR for HL-LHC computing in 2020
- In 2017 we will provide a document describing the roadmap to the TDR (strategy document)
 - Using the CWP as input
 - Describing potential new computing models
 - Defining prototyping and R&D work that will be needed
- The TDR will not be the end technology evolution in 6-7 years will be significant, cannot afford not to follow it
- □ NB. Very different situation from the original TDR
 - we have a working and well-understood system that must continue to operate and evolve into the HL-LHC computing programme

Strategy document in 2017

- Describe the HL-LHC computing challenge given what we currently understand
 - Running conditions, trigger rates, event complexity, based on reasonable extrapolations of today's computing models
 - This will be a snapshot of a (yearly?) update of these numbers
- Describe the potential computing models and how they could change the cost and/or physics output
 - Necessarily at a high level
- Cost models
 - Appropriate metrics, balance/trade-off between CPU, storage, network etc
- □ State-of-the-art understanding of evolution of technology
 - 2-3 years is already difficult to predict; 10 years is impossible (even for the technology companies)
- Set out what we see as R&D areas, and potential prototyping activities or demonstrators:
 - Goals, metrics, resources, plans
- □ The HSF CWP will provide the basis of this

Technical topics

- Computing models
 - Different scenarios
 - Use of in-house, commercial, dedicated architectures, HPC, opportunistic, etc. resources
- □ Technology "choices" may not be a choice but market-driven
- Data management and data access layer
 - End-to-end performance considerations; models of data delivery, event streaming, etc.
- Networking
- Resource provisioning layer
- Workload management layer
- □ Analysis facilities how will analysis be done traditional vs "query" vs ML, …
- □ These above lead to ideas about facilities and how they may look
- □ The stated (and agreed) intention in the CWP discussion is to make these components as common and non-experiment specific as possible
 - Clarify what really needs to be specific
- The CWP will provide the details of progress and R&D roadmaps in many key areas

What a 2020 TDR may contain

- Broad expectations of costs of computing based on expected evolution of the models
 - But 2020 is still 6 years before Run 4 a lot will change and we must not be too
 prescriptive
 - Rather have to show evolution goes towards maintaining a constant cost (or not!)
- □ Updated requirements for 1st years of HL-LHC
 - To be regularly updated
- Updated technology expectations
 - Snapshot as understood in 2020
- □ Firmer ideas of computing models based on the prototyping work
 - Roles of online, Tier 0, other facilities
 - Bulk data management, processing, analysis models, simulation
 - Roadmaps for R&D that is still required
- □ Data preservation how to use Run 1,2,3 data
- A lot of details will not affect the cost significantly, and are part of the operating and evolving service

Updates of key CWP strategic areas

Scientific Computing Forum

- □ Initiative of the CERN Directorate
 - At the request of the Council to have more "informal" interaction on strategic topics
- □ Have held 2 meetings (https://indico.cern.ch/category/9249)
 - February and May 2017
 - Membership not yet settled not only member states
- Discussions
 - First meeting <u>strategy paper</u>, reflecting at high level some of the ideas for long term computing evolution (for WLCG)
 - Second meeting <u>Relationship of CERN and WLCG with SKA;</u> input from several countries on their scientific computing strategies

(Aside) Globus

- NSF has announced end of support for open source Globus toolkit, from end 2017
 - I have been in touch with NSF to ask about support for LHC – they recognize the problem
 - No feedback yet
 - What will OSG and EGI do?
- Fall-back WLCG takes relevant packages and maintains them
 - gsi, gridftp, myproxy
 - And perhaps eventually replaces them

Conclusions

- Run 2 in 2016 delivered 50 PB of new data, following exceptional performance of the LHC
 - Continued to set new performance records in all areas
- WLCG infrastructure continued to be even more active in the EYETS
- 2017/18 look to be challenging in terms of resource availability, esp if LHC meets expected luminosities, availability
- Activity (& engagement) is ramping up to look at evolution of the computing models for the future

