Phenomenology 2017 Symposium

Contribution ID: 297 Type: parallel talk

Radiative Decays of the Higgs Boson to a Pair of Fermions

Monday, 8 May 2017 15:00 (15 minutes)

The radiative decays of the Higgs boson to a fermion pair $h\to f\bar f\gamma$ is revisited, where f denotes a fermion in the Standard Model (SM). Both the chirality-flipping diagrams via the Yukawa couplings at the order $\mathcal{O}(y_f^2\alpha)$, and the chirality-conserving contributions via the top-quark loops of the order $\mathcal{O}(y_t^2\alpha^3)$ and the electroweak loops at the order $\mathcal{O}(\alpha^4)$, are included. The QED correction is about $Q_f^2\times calO(1\%)$ and contributes to the running of fermion masses at a similar level, which should be taken into account for future precision Higgs physics.

The chirality-conserving electroweak-loop processes are interesting from the observational point of view. First, the branching fraction of the radiative decay $h \to \mu^+ \mu^- \gamma$ is about a half of that of $h \to \mu^+ \mu^-$, and that of $h \to e^+ e^- \gamma$ is more than four orders of magnitude larger than that of $h \to e^+ e^-$, both of which reach about 10^{-4} . The branching fraction of $h \to \tau^+ \tau^- \gamma$ is of the order 10^{-3} .

All the leptonic radiative decays are potentially observable at the LHC Run 2 or the HL-LHC.

The kinematic distributions for the photon energy or the fermion pair invariant mass provide non-ambiguous discrimination for the underlying mechanisms of the Higgs radiative decay. The process $h\to c\bar c\gamma$ and evaluate the observability at the LHC will be discussed. It turns out to be comparable to the other related studies and better than the $h\to J/\psi$ γ channel in constraining the charm-Yukawa coupling.

Summary

Primary authors: HAN, Tao (University of Pittsburgh); WANG, Xing (University of Pittsburgh)

Presenter: WANG, Xing (University of Pittsburgh)

Session Classification: Higgs