

Gluino reach and mass extraction at the LHC in radiatively-driven natural SUSY

Monday, 8 May 2017 15:00 (15 minutes)

> Radiatively-driven natural SUSY (RNS) models enjoy electroweak naturalness at the $10 \backslash \%$ level while respecting LHC sparticle and Higgs mass constraints. Gluino and top squark masses can range up to several TeV (with other squarks even heavier) but a set of light Higgsinos are required with mass not too far above $m_{h} \sim 125 \mathrm{GeV}$. Within the RNS framework, gluinos dominantly decay via
> $\tilde{g} \rightarrow t \tilde{t}_{1}^{*}, \widetilde{t}_{1} \rightarrow t \bar{t} \widetilde{Z}_{1,2}$ or
> $t \bar{b} \widetilde{W}_{1}^{-}+c . c$. .
> where the decay products of the higgsino-like
> \widetilde{W}_{1} and \widetilde{Z}_{2} are very soft. Gluino pair production is, therefore, signalled by events with up to four hard b-jets and large E_{T}. We devise a set of cuts to isolate a relatively pure gluino sample at the (high luminosity) LHC and show that in the RNS model with very heavy squarks, the gluino signal will be accessible for $m_{\tilde{g}}<2400(2800)^{\sim} \mathrm{GeV}$ for an integrated luminosity of 300 (3000) ${ }^{\sim}{ }^{-1}$. We
> also show that the measurement of the rate of gluino events in the clean sample mentioned above allows for a determination of $m_{\tilde{g}}$ with a statistical precision of $2-5 \%$ (depending on the integrated luminosity and the gluino mass) over the range of gluino masses where a 5σ discovery is possible at the LHC.

Summary

Prospects for gluino discovery and mass measurement at the high luminosity LHC in a class of SUSY models where stops are relatively heavy, but lighter than the relatively heavy (but still accessible) gluino.

Primary authors: BAER, Howard (University of Oklahoma); BARGER, Vernon (University of Wisconsin, Madison); Dr GAINER, James (University of Hawaii, Honolulu); HUANG, Peisi; SAVOY, Michael; SENGUPTA, Dibyashree (University of Oklahoma); TATA, Xerxes (University of Hawaii); GAINER, James (University of Hawaii at Manoa)

Presenters: Dr GAINER, James (University of Hawaii, Honolulu); GAINER, James (University of Hawaii at Manoa)

Session Classification: SUSY I

